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This Lecture: Advanced Machine Learning

 Regression Approaches j X =R
» Linear Regression —

» Regularization (Ridge, Lasso) B

» Kernels (Kernel Ridge Regression)

» Gaussian Processes

¢ Approximate Inference
» Sampling Approaches
» MCMC

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation & Optimization
» CNNs, RNNs, ResNets, etc.

B. Leibe
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RWTH//CHE RWTH CHET
Topics of This Lecture Recap: Data Augmentation
¢ Recap: Data (Pre-)processing o Effect 3 !
» Stochastic Gradient Descent & Minibatches » Much larger training set - B ﬁ
- Data Augmentation .~ Robustness against expected
» Normalization variations |
» Initialization © =
. 1 - During testin VN NEN Y
* Convergence of Gradient Descent 2 g g
> i s » When cropping was used =
» Choosing Learning Rates = during training, need to E " T 1 PX m
> Momentum & Nesterov Momentum E again apply crops to get = e e
e e
» Other Optimizers 2 » Beneficial to also apply = “ -
= o .
« Other Tricks E f1IPping during test. ’ ? 'H ﬁ H |'ﬂ|
Batch Normalization 3 » Applying several ColorPCA N A
. D 8 variations can bring another Augmented training data
. Dropout s ~1% improvement, but at a (from one original image)
2 significantly increased runtime.
3 4
B. Leibe B. Leibe lmage source: Lucas Bever
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Recap: Normalizing the Inputs Recap: Glorot Initialization [Glorot & Bengo, “10]
¢ Convergence is fastest if el ¢ Variance of neuron activations
Maan
» The mean of each input variable 4$¢ Cancellation » Suppose we have an input X with n components and a linear
over the training set is zero. . o : :.‘7 . neuron with random weights W that spits out a number Y.
» The inputs are scaled such that b - . We want the variance of the input and output of a unit to be
all have the same covariance. Erpansion e the same, therefore n Var(W,) should be 1. This means
- Input variables are uncorrelated ~ * S 5 11
if possible. Equalization H] Var(W;) = - = —
n Min
. 2ol 2
e sgtenr > E » Or for the backpropagated gradient
g Var(W;) =
¢ Advisable normalization steps (for MLPs) E ar(Ws) = Tont
» Normalize all inputs that an input unit sees to zero-mean, 5 . As a compromise, Glorot & Bengio propose to use
unit covariance. 2 5
» If possible, try to decorrelate them using PCA (also known as § Var(W) = ———
Karhunen-Loeve expansion). & Tin T+ Tout
5 2 = Randomly sample the weights with this variance. That’s it. .

B. Leibe | page cource: Yano LeCun et al,, Efficient BackProp (1998]
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Recap: He Initialization [He et al., ‘15] Topics of This Lecture
¢ Extension of Glorot Initialization to ReLU units
» Use Rectified Linear Units (ReLU)
g(a) max {0,a}
© . Effect: gradient is propagated with ©
5 a constant factor o 5 X
E og(a) L a0 - £ o Convergence of.Gradlent Descent
= 3 = 0 » Choosing Learning Rates
o a , else =
€ € » Momentum & Nesterov Momentum
£l « Same basic idea: Output should have the input variance 8 - RMSProp
2 ~ However, the Glorot derivation was based on tanh units, 2 - Other Optimizers
e linearity assumption around zero does not hold for ReLU. S
E » He et al. made the derivations, proposed to use instead .ED
L7 Q
o o
§ Var(W) = 2 §
H e , H
B. Leibe
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Choosing the Right Learning Rate Choosing the Right Learning Rate

* Analyzing the convergence of Gradient Descent * Behavior for different learning rates

» Consider a simple 1D example first Elo) Efw) E(w)
- dE(W) -
Fr=1) — ) - \ n<n / N\ n=n,
W W n iy il ot \ ot
) / W\
» What is the optimal learning rate 7,,,? N \ /
a) [ “ b) o, v

» If Eis quadratic, the optimal learning rate is given by the Elw)

inverse of the Hessian

_(EEW) T
Nopt = T2

» What happens if we exceed this learning rate?
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B. Leibe ) mage cource: Yano LeCun et al,, Efficient BackProp (1998]

B. Leibe ) mace source: Yann leCun et al,, Efficient BackProp (1998]

RWTH//CHE RWTH CHET
Learning Rate vs. Training Error Batch vs. Stochastic Learning
; \ « Batch Learning
7 » Simplest case: steepest decent —
_ on the error surface. 1 //;
’ = Updates perpendicular to contour w1 / / )
e e lines .
] 5 -
£ E
H H w2 —
o =3 . .
= =1 * Stochastic Learning
§ Do not .go|beyond § » Simplest case: zig-zag around the
° 2 this point! o direction of steepest descent. 7<)
s 5 = Updates perpendicular to constraints
g . Aﬁ g from training examples. w1l
° T =
@ 0 )
e 107 0! 10" e
g Learning rate (logarithmic scale) g T p—
= 11 = ; 12
B. Leibe Jmage source: g ide adapted from Geoff Hinton B. Leibe Image source: Geoff Hinto
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Why Learning Can Be Slow

¢ If the inputs are correlated
» The ellipse will be very elongated.

» The direction of steepest descent is
almost perpendicular to the direction
towards the minimum!

This is just the opposite of what we want!

Slide adapted from Geoff Hintan B. Leibe Image source: Geoff Hint

RWTH//CHE
The Momentum Method: Implementation

¢ Change in the update equations

» Effect of the gradient: increment the previous velocity, subject
to a decay by o < 1.

OF
t) = t—1)—e—(t
vit) = av(t—1) - =5(t)
» Set the weight change to the current velocity
Aw = v(t)

= av(t—1) sg—i (t)
JE

= aAw(t— 1)~ sﬁ(t)

15
ide credit: Geoff Hinton B. Leibe
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TRWTH/ACHEN
Improvement: Nesterov-Momentum

Standard Momentum

/ Correction
Accumulated gradient

¢ Standard Momentum method
» First compute the gradient at the current location
> Then jump in the direction of the updated accumulated gradient

¢ Improvement [Sutskever 2012]
» (Inspiration: Nesterov method for optimizing convex functions.)
» First jump in the direction of the previous accumulated gradient
» Then measure the gradient where you end up and make a
correction.

= Intuition: It’s better to correct a mistake after you’ve made it.
17

ide adapted from Geoff Hinton B. Leibe
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The Momentum Method

¢ Idea

» Instead of using the gradient to change the position of the
weight “particle”, use it to change the velocity.

¢ Intuition
» Example: Ball rolling on the error surface

» It starts off by following the error surface, but once it has
accumulated momentum, it no longer does steepest decent.

o Effect
» Dampen oscillations in directions of high
curvature by combining gradients with
opposite signs.
» Build up speed in directions with a
gentle but consistent gradient.

ide credit: Geoff Hinton 8. Leibe Image source: Geoff Hintg

RWTHACHEN
The Momentum Method: Behavior

¢ Behavior
» If the error surface is a tilted plane, the ball reaches a terminal

velocity . 1 OF
Vi) = 5w

- If the momentum « is close to 1, this is much faster than simple
gradient descent.

» At the beginning of learning, there may be very large gradients.
- Use a small momentum initially (e.g., « = 0.5).

- Once the large gradients have disappeared and the weights are
stuck in a ravine, the momentum can be smoothly raised to its final
value (e.g., @ = 0.90 or even @ = 0.99).

= This allows us to learn at a rate that would cause divergent
oscillations without the momentum.

ide credit: Geoff Hinton LA
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Separate, Adaptive Learning Rates

¢ Problem
> In multilayer nets, the appropriate learning rates
can vary widely between weights.
» The magnitudes of the gradients are often very
different for the different layers, especially
if the initial weights are small.

= Gradients can get very smallin the early layers
of deep nets.

ide adapted from Geoff Hinton 5. Leibe




Separate, Adaptive Learning Rates Adaptive Learning Rates

e Problem

» In multilayer nets, the appropriate learning rates
can vary widely between weights.

» The magnitudes of the gradients are often very
different for the different layers, especially
if the initial weights are small.

= Gradients can get very small in the early layers
of deep nets.

» The fan-in of a unit determines the size of the
“overshoot” effect when changing multiple weights
simultaneously to correct the same error.

- The fan-in often varies widely between layers

¢ One possible strategy
» Start with a local gain of 1 for every weight

Increase the local gain if the gradient for the weight does not
change the sign.

Use small additive increases and multiplicative decreases (for
mini-batch)

Aw

v

v

OF

ii = i n
7 i Bwu

OE OF
g (9F ,OF
if ( s O 1)) >0
then gi;(t) = gi;(t — 1) + 0.05
else g;;(t) = gi;(t — 1) +0.95

= Big gains will decay rapidly once oscillation starts.

¢ Solution

» Use a global learning rate, multiplied by a local gain per weight
(determined empirically)

Advanced Machine Learning Winter’16
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RWTH//CHE RWTH CHET
Better Adaptation: RMSProp Other Optimizers (Lucas)
¢ Motivation ¢ AdaGrad [Duchi ’10]
» The magnitude of the gradient can be very different for
different weights and can change during learning.
» This makes it hard to choose a single global learning rate. « AdaDelta [Zeiler *12]
» For batch learning, we can deal with this by only using the sign
of the gradient, but we need to generalize this for minibatches.
¢ Adam [Ba & Kingma ’14]

¢ |dea of RMSProp

» Divide the gradient by a running average of its recent magnitude

Advanced Machine Learning Winter’16
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9E .\’
MeanSq(w;;,t) = 0.9MeanSq(w;;, t — 1) + 0.1 [ =—(t) * Notes o
Ow;; » All of those methods have the goal to make the optimization less
. . sensitive to parameter settings.
- Divide the gradient by Sqrt(MeanSq(wU’t))' » Adam is currently becoming the quasi-standard
§ 21 . 22
ide adapted from Geoff Hinton B. Lethe B. Leibe
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Behavior in a Long Valley Behavior around a Saddle Point
SGD — SGD
Momentum ~ Momentum
— NAG — NAG
; AR == Adagrad —— Adagrad
. Adadelta Adadelta
Rmsprop m . Rmsprop
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lmage source: Aelc Radford, htto://imeur, Haol
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Visualization of Convergence Behavior

sgd
momentum
nag
adagrad
adadelta
rmsprop

100 120

B. Leibe

Image source: Aelc Radford, htto://imeur, R
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Reducing the Learning Rate

« Final improvement step after convergence is reached
» Reduce learning rate by a
factor of 10.
» Continue training for a few
epochs.
~ Do this 1-3 times, then stop
training.

Reduced
learning rate

Training error

o Effect

Epoch
» Turning down the learning rate will reduce
the random fluctuations in the error due to

different gradients on different minibatches.

e Be careful: Do not turn down the learning rate too soon!

» Further progress will be much slower after that.
27

ide adapted from Geoff Hinton B. Leibe
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Batch Normalization [loffe & Szegedy ’14]

¢ Motivation
» Optimization works best if all inputs of a layer are normalized.

¢ Idea

» Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

» l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

o Effect
» Much improved convergence

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTHAACHET
Trick: Patience

¢ Saddle points dominate in high-dimensional spaces!

— Training error (MSE) ||
uoL e— Norm of the gradients ||

10°

Training error (MSE)
Norm of the gradients

100 200 300 T 50d°

= Learning often doesn’t get stuck, you just may have to wait...
26

Image source: Yoshua Bengi
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RWTH/CHED
Topics of This Lecture
e Other Tricks
» Batch Normalization
» Dropout
B. Leibe 28
RWTH/CHED
Dropout [Srivastava, Hinton ’12]

(a) Standard Neural Net

¢ Idea
» Randomly switch off units during training.

» Change network architecture for each data point, effectively
training many different variants of the network.

» When applying the trained network, multiply activations with
the probability that the unit was set to zero.

= Greatly improved performance

B. Leibe
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References and Further Reading References

¢ More information on many practical tricks can be found
in Chapter 1 of the book

¢ RelLu

» X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, AISTATS 2011.

¢ Initialization

» X. Glorot, Y. Bengio, Understanding the difficulty of training
deep feedforward neural networks, AISTATS 2010.

» K. He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification, ArXiV 1502.01852v1, 2015.

» A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,
ArXiv 1312.6120v3, 2014.

G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade
Springer, 1998, 2012

Neural Networks:
[ Tricks of the Trade

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller
Efficient BackProp, Ch.1 of the above book., 1998.
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References and Further Reading

* Batch Normalization

» S. loffe, C. Szegedy, Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, ArXiV
1502.03167, 2015.

e Dropout

» N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.
Salakhutdinov, Dropout: A Simple Way to Prevent Neural
Networks from Overfitting, JMLR, Vol. 15:1929-1958, 2014.
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http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120
http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

