Announcements

• Exam
 ➢ 1st Date: Monday, 29.02., 13:30 - 17:30h
 ➢ 2nd Date: Thursday, 30.03., 09:30 - 12:30h
 ➢ Closed-book exam, the core exam time will be 2h.
 ➢ We will send around an announcement with the exact starting times and places by email.

• Test exam
 ➢ Date: Thursday, 11.02., 14:15 - 15:45h, room UMIC 025
 ➢ Core exam time will be 1h
 ➢ Purpose: Prepare you for the questions you can expect.
 ➢ Possibility to collect bonus exercise points!
Announcements (2)

- Last lecture next Tuesday: Repetition
 - Summary of all topics in the lecture
 - “Big picture” and current research directions
 - Opportunity to ask questions

- Please use this opportunity and prepare questions!
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - Epipolar Geometry and Stereo Basics
 - Camera calibration & Uncalibrated Reconstruction
 - Active Stereo
- Motion
 - Motion and Optical Flow
- 3D Reconstruction (Reprise)
 - Structure-from-Motion
Recap: Estimating Optical Flow

• Given two subsequent frames, estimate the apparent motion field $u(x, y)$ and $v(x, y)$ between them.

• Key assumptions
 - **Brightness constancy**: projection of the same point looks the same in every frame.
 - **Small motion**: points do not move very far.
 - **Spatial coherence**: points move like their neighbors.
Recap: Lucas-Kanade Optical Flow

- Use all pixels in a $K \times K$ window to get more equations.
- Least squares problem:
 \[
 \begin{bmatrix}
 I_x(p_1) & I_y(p_1) \\
 I_x(p_2) & I_y(p_2) \\
 \vdots & \vdots \\
 I_x(p_{25}) & I_y(p_{25})
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 =
 \begin{bmatrix}
 I_t(p_1) \\
 I_t(p_2) \\
 \vdots \\
 I_t(p_{25})
 \end{bmatrix}
 \]

- Minimum least squares solution given by solution of
 \[
 (A^T A) \cdot d = A^T b
 \]

Recall the Harris detector!
Recap: Iterative Refinement

- Estimate velocity at each pixel using one iteration of LK estimation.
- Warp one image toward the other using the estimated flow field.
- Refine estimate by repeating the process.

- Iterative procedure
 - Results in subpixel accurate localization.
 - Converges for small displacements.
Recap: Coarse-to-fine Estimation

Image 1

Gaussian pyramid of image 1

Image 2

Gaussian pyramid of image 2

\[u = 10 \text{ pixels} \]

\[u = 5 \text{ pixels} \]

\[u = 2.5 \text{ pixels} \]

\[u = 1.25 \text{ pixels} \]
Recap: Coarse-to-fine Estimation

Slide credit: Steve Seitz
Topics of This Lecture

• Structure from Motion (SfM)
 - Motivation
 - Ambiguity

• Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

• Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

• Applications
Structure from Motion

- Given: m images of n fixed 3D points

\[x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}
What Can We Use This For?

- E.g. movie special effects

Video

Video Credit: Stefan Hafeneger
Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same:

$$x = PX = \left(\frac{1}{k}P \right) (kX)$$

\Rightarrow It is impossible to recover the absolute scale of the scene!

Slide credit: Svetlana Lazebnik
Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same.

- More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change

$$x = PX = (PQ^{-1})QX$$
Reconstruction Ambiguity: Similarity

\[x = PX = (PQ_S^{-1})Q_SX \]
Reconstruction Ambiguity: Affine

\[x = PX = (PQ_A^{-1})Q_A X \]
Reconstruction Ambiguity: Projective

\[x = PX = \left(PQ_P^{-1} \right) Q_P X \]
Projective Ambiguity

Slide credit: Svetlana Lazebnik

B. Leibe

Images from Hartley & Zisserman
From Projective to Affine

Images from Hartley & Zisserman
From Affine to Similarity
Hierarchy of 3D Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>15dof</th>
</tr>
</thead>
</table>
| Projective | \[
 \begin{bmatrix}
 A & t \\
 v^T & v
 \end{bmatrix}
\] | Preserves intersection and tangency |

<table>
<thead>
<tr>
<th>Affine</th>
<th>12dof</th>
</tr>
</thead>
</table>
| \[
 \begin{bmatrix}
 A & t \\
 0^T & 1
 \end{bmatrix}
\] | Preserves parallelism, volume ratios |

<table>
<thead>
<tr>
<th>Similarity</th>
<th>7dof</th>
</tr>
</thead>
</table>
| \[
 \begin{bmatrix}
 sR & t \\
 0^T & 1
 \end{bmatrix}
\] | Preserves angles, ratios of length |

<table>
<thead>
<tr>
<th>Euclidean</th>
<th>6dof</th>
</tr>
</thead>
</table>
| \[
 \begin{bmatrix}
 R & t \\
 0^T & 1
 \end{bmatrix}
\] | Preserves angles, lengths |

- With no constraints on the camera calibration matrix or on the scene, we get a *projective* reconstruction.
- Need additional information to *upgrade* the reconstruction to affine, similarity, or Euclidean.
Topics of This Lecture

• Structure from Motion (SfM)
 - Motivation
 - Ambiguity

• Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

• Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

• Applications
Structure from Motion

- Let’s start with affine cameras (the math is easier)
Orthographic Projection

- Special case of perspective projection
 - Distance from center of projection to image plane is infinite

- Projection matrix:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\Rightarrow (x, y)
\]
Affine Cameras

Orthographic Projection

Parallel Projection

Slide credit: Svetlana Lazebnik
Affine Cameras

• A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

\[
P = [3 \times 3 \text{ affine}] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [4 \times 4 \text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}
\]

• Affine projection is a linear mapping + translation in inhomogeneous coordinates

\[
x = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = AX + b
\]

Projection of world origin

Slide credit: Svetlana Lazebnik
Affine Structure from Motion

• Given: m images of n fixed 3D points:
 - $x_{ij} = A_i X_j + b_i, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$

• Problem: use the mn correspondences x_{ij} to estimate m projection matrices A_i and translation vectors b_i, and n points X_j

• The reconstruction is defined up to an arbitrary affine transformation Q (12 degrees of freedom):

 $$\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix} Q^{-1}, \quad \begin{bmatrix} X \\ 1 \end{bmatrix} \rightarrow Q \begin{bmatrix} X \\ 1 \end{bmatrix}$$

• We have $2mn$ knowns and $8m + 3n$ unknowns (minus 12 dof for affine ambiguity).
 - Thus, we must have $2mn \geq 8m + 3n - 12$.
 - For two views, we need four point correspondences.
Affine Structure from Motion

- Centering: subtract the centroid of the image points

\[
\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} (A_i X_k + b_i)
\]

\[= A_i \left(X_j - \frac{1}{n} \sum_{k=1}^{n} X_k \right) = A_i \hat{X}_j\]

- For simplicity, assume that the origin of the world coordinate system is at the centroid of the 3D points.
- After centering, each normalized point \(x_{ij}\) is related to the 3D point \(X_i\) by

\[\hat{x}_{ij} = A_i X_j\]
Affine Structure from Motion

• Let’s create a $2m \times n$ data (measurement) matrix:

$$ D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix} $$

Cameras (2m)

Points (n)

Slide credit: Svetlana Lazebnik
Affine Structure from Motion

• Let’s create a $2m \times n$ data (measurement) matrix:

$$
D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & & & \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
$$

Points (3 × n)
Cameras
(2m × 3)

• The measurement matrix $D = MS$ must have rank 3!

Slide credit: Svetlana Lazebnik
Factorizing the Measurement Matrix

\[D = MS \]
Factorizing the Measurement Matrix

- Singular value decomposition of D:

$$D = U W V^T$$

Slide credit: Martial Hebert
Factorizing the **Measurement Matrix**

- **Singular value decomposition of** D:

 $$D = U W V^T$$

 To reduce to rank 3, we just need to set all the singular values to 0 except for the first 3.

Slide credit: Martial Hebert
Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[
\begin{align*}
2m & \quad \text{D} \quad \text{U}_3 \times 3 \quad \text{W}_3 \times \text{V}_3^T \\
\end{align*}
\]
Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[D = U_3 \times W_3 \times V_3^T \]

Possible decomposition:

\[M = U_3 W_3^{1/2} \quad S = W_3^{1/2} V_3^T \]

This decomposition minimizes \(|D-MS|^2 \)

Slide credit: Martial Hebert
Affine Ambiguity

- The decomposition is not unique. We get the same D by using any 3×3 matrix C and applying the transformations $M \to MC$, $S \to C^{-1}S$.
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example). We need a *Euclidean upgrade*.
Estimating the Euclidean Upgrade

- Orthographic assumption: image axes are perpendicular and scale is 1.

\[a_1 \cdot a_2 = 0 \]
\[|a_1|^2 = |a_2|^2 = 1 \]

- This can be converted into a system of $3m$ equations:

\[
\begin{align*}
\hat{a}_{i1} \cdot \hat{a}_{i2} &= 0 \\
|\hat{a}_{i1}| &= 1 \iff \begin{cases}
\hat{a}_{i1} = 0 & \text{if } a_{i1} = 0 \
\hat{a}_{i2} = 0 & \text{if } a_{i2} = 0 \\
\hat{a}_{i1} = a_{i1} & \text{if } a_{i1} \neq 0 \\
\hat{a}_{i2} = a_{i2} & \text{if } a_{i2} \neq 0
\end{cases}
\end{align*}
\]

\[a_{i1}^T C C^T a_{i2} = 0 \]
\[a_{i1}^T C C^T a_{i1} = 1, \quad i = 1, \ldots, m \]
\[a_{i2}^T C C^T a_{i2} = 1 \]

for the transformation matrix $C \implies$ goal: estimate C
Estimating the Euclidean Upgrade

- System of $3m$ equations:
 \[
 \begin{align*}
 \hat{a}_{i1} \cdot \hat{a}_{i2} &= 0 \\
 |\hat{a}_{i1}| &= 1 \\
 |\hat{a}_{i2}| &= 1
 \end{align*}
 \Rightarrow
 \begin{align*}
 a_{i1}^T C C^T a_{i2} &= 0 \\
 a_{i1}^T C C^T a_{i1} &= 1, \quad i = 1, \ldots, m \\
 a_{i2}^T C C^T a_{i2} &= 1
 \end{align*}
 \]

- Let
 \[L = C C^T \quad A_i = \begin{bmatrix} a_{i1}^T \\ a_{i2}^T \end{bmatrix}, \quad i = 1, \ldots, m \]

- Then this translates to $3m$ equations in L
 \[A_i L A_i^T = I, \quad i = 1, \ldots, m \]

 - Solve for L
 - Recover C from L by Cholesky decomposition: $L = C C^T$
 - Update M and S: $M = M C$, $S = C^{-1} S$
Algorithm Summary

- Given: m images and n features x_{ij}
- For each image i, center the feature coordinates.
- Construct a $2m \times n$ measurement matrix D:
 - Column j contains the projection of point j in all views
 - Row i contains one coordinate of the projections of all the n points in image i
- Factorize D:
 - Compute SVD: $D = U W V^T$
 - Create U_3 by taking the first 3 columns of U
 - Create V_3 by taking the first 3 columns of V
 - Create W_3 by taking the upper left 3×3 block of W
- Create the motion and shape matrices:
 - $M = U_3 W_3^{1/2}$ and $S = W_3^{1/2} V_3^T$ (or $M = U_3$ and $S = W_3 V_3^T$)
- Eliminate affine ambiguity

Slide credit: Martial Hebert
Reconstruction Results

Image Source: Tomasi & Kanade
Dealing with Missing Data

• So far, we have assumed that all points are visible in all views
• In reality, the measurement matrix typically looks something like this:
Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

- Incremental bilinear refinement

(1) Perform factorization on a dense sub-block

Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

- Incremental bilinear refinement

(1) Perform factorization on a dense sub-block
(2) Solve for a new 3D point visible by at least two known cameras (linear least squares)

Slide credit: Svetlana Lazebnik
Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

- Incremental bilinear refinement

 1. Perform factorization on a dense sub-block
 2. Solve for a new 3D point visible by at least two known cameras (linear least squares)
 3. Solve for a new camera that sees at least three known 3D points (linear least squares)

Comments: Affine SfM

- Affine SfM was historically developed first.
- It is valid under the assumption of **affine cameras**.
 - Which does not hold for real physical cameras...
 - ...but which is still tolerable if the scene points are far away from the camera.

- For good results with real cameras, we typically need projective SfM.
 - Harder problem, more ambiguity
 - Math is a bit more involved...
 (Here, only basic ideas. If you want to implement it, please look at the H&Z book for details).
Topics of This Lecture

- **Structure from Motion (SfM)**
 - Motivation
 - Ambiguity

- **Affine SfM**
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

- **Projective SfM**
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

- **Applications**
Projective Structure from Motion

- Given: m images of n fixed 3D points

$$x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$$

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}
Projective Structure from Motion

- Given: m images of n fixed 3D points

 - $z_{ij} x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}

- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation Q:

 \[X \rightarrow QX, \quad P \rightarrow PQ^{-1} \]

- We can solve for structure and motion when

 \[2mn \geq 11m + 3n - 15 \]

- For two cameras, at least 7 points are needed.
Projective SfM: Two-Camera Case

- Assume fundamental matrix F between the two views
 - First camera matrix: $[I|0]Q^{-1}$
 - Second camera matrix: $[A|b]Q^{-1}$
- Let $\tilde{X} = QX$, then $z'x' = [I|0]\tilde{X}$, $z'x' = [A|b]\tilde{X}$
- And
 $$z'x' = A[I|0]\tilde{X} + b = zAx + b$$
 $$z'x' \times b = zAx \times b$$
 $$(z'x' \times b) \cdot x' = (zAx \times b) \cdot x'$$
 $$0 = (zAx \times b) \cdot x'$$
- So we have
 $$x'^T[b_x]Ax = 0$$
 $$F = [b_x]A \quad b: \text{epipole } (F^Tb = 0), \quad A = -[b_x]F$$
Projective SfM: Two-Camera Case

- This means that if we can compute the fundamental matrix between two cameras, we can directly estimate the two projection matrices from F.

- Once we have the projection matrices, we can compute the 3D position of any point X by triangulation.

- How can we obtain both kinds of information at the same time?
Projective Factorization

\[
D = \begin{bmatrix}
 z_{11}x_{11} & z_{12}x_{12} & \cdots & z_{1n}x_{1n} \\
 z_{21}x_{21} & z_{22}x_{22} & \cdots & z_{2n}x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{m1}x_{m1} & z_{m2}x_{m2} & \cdots & z_{mn}x_{mn}
\end{bmatrix} = \begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_m
\end{bmatrix}\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\]

Cameras
(3m x 4)

Points (4 x n)

\[
D = MS \text{ has rank 4}
\]

- If we knew the depths \(z\), we could factorize \(D\) to estimate \(M\) and \(S\).
- If we knew \(M\) and \(S\), we could solve for \(z\).
- Solution: iterative approach (alternate between above two steps).

Slide credit: Svetlana Lazebnik
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - triangulation
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image -
 calibration
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera -
 triangulation
- Refine structure and motion: *bundle adjustment*

Slide credit: Svetlana Lazebnik
Bundle Adjustment

- Non-linear method for refining structure and motion
- Minimizing mean-square reprojection error

\[E(P, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, P_{i}X_{j})^{2} \]
Bundle Adjustment

• Seeks the Maximum Likelihood (ML) solution assuming the measurement noise is Gaussian.
• It involves adjusting the bundle of rays between each camera center and the set of 3D points.
• Bundle adjustment should generally be used as the final step of any multi-view reconstruction algorithm.
 ➢ Considerably improves the results.
 ➢ Allows assignment of individual covariances to each measurement.

• However...
 ➢ It needs a good initialization.
 ➢ It can become an extremely large minimization problem.

• Very efficient algorithms available.

B. Leibe
Projective Ambiguity

- If we don’t know anything about the camera or the scene, the best we can get with this is a reconstruction up to a projective ambiguity Q.
 - This can already be useful.
 - E.g. we can answer questions like “at what point does a line intersect a plane”?

- If we want to convert this to a “true” reconstruction, we need a *Euclidean upgrade*.
 - Need to put in additional knowledge about the camera (calibration) or about the scene (e.g. from markers).
 - Several methods available (see F&P Chapter 13.5 or H&Z Chapter 19)
Self-Calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images.

- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images.

 - Compute initial projective reconstruction and find 3D projective transformation matrix Q such that all camera matrices are in the form $P_i = K \begin{bmatrix} R_i \\ t_i \end{bmatrix}$.

- Can use constraints on the form of the calibration matrix: square pixels, zero skew, fixed focal length, etc.
Practical Considerations (1)

1. Role of the baseline
 - Small baseline: large depth error
 - Large baseline: difficult search problem

• Solution
 - Track features between frames until baseline is sufficient.
Practical Considerations (2)

2. There will still be many outliers
 - Incorrect feature matches
 - Moving objects

⇒ Apply RANSAC to get robust estimates based on the inlier points.

3. Estimation quality depends on the point configuration
 - Points that are close together in the image produce less stable solutions.

⇒ Subdivide image into a grid and try to extract about the same number of features per grid cell.
General Guidelines

• Use calibrated cameras wherever possible.
 ➢ It makes life so much easier, especially for SfM.

• SfM with 2 cameras is *far* more robust than with a single camera.
 ➢ Triangulate feature points in 3D using stereo.
 ➢ Perform 2D-3D matching to recover the motion.
 ➢ More robust to loss of scale (main problem of 1-camera SfM).

• Any constraint on the setup can be useful
 ➢ E.g. square pixels, zero skew, fixed focal length in each camera
 ➢ E.g. fixed baseline in stereo SfM setup
 ➢ E.g. constrained camera motion on a ground plane
 ➢ Making best use of those constraints may require adapting the algorithms (some known results are described in H&Z).
Structure-from-Motion: Limitations

- Very difficult to reliably estimate metric SfM unless
 - Large (x or y) motion \textit{or}
 - Large field-of-view and depth variation
- Camera calibration important for Euclidean reconstruction
- Need good feature tracker
Topics of This Lecture

• Structure from Motion (SfM)
 - Motivation
 - Ambiguity

• Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

• Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

• Applications
Commercial Software Packages

- boujou
 (http://www.2d3.com/)
- PFTrack
 (http://www.thepixelfarm.co.uk/)
- MatchMover
 (http://www.realviz.com/)
- SynthEyes
 (http://www.ssontech.com/)
- Icarus
 (http://aig.cs.man.ac.uk/research/reveal/icarus/)
- Voodoo Camera Tracker
 (http://www.digilab.uni-hannover.de/)
Applications: Matchmoving

• Putting virtual objects into real-world videos

Original sequence

SfM results

Tracked features

Final video

Videos from Stefan Hafenegger
Applications: Large-Scale SfM from Flickr

References and Further Reading

- A (relatively short) treatment of affine and projective SfM and the basic ideas and algorithms can be found in Chapters 12 and 13 of

- More detailed information (if you really want to implement this) and better explanations can be found in Chapters 10, 18 (factorization) and 19 (self-calibration) of

 R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004