Computer Vision - Lecture 11

Local Features

03.12.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Course Outline

• Image Processing Basics
• Segmentation & Grouping
• Object Recognition & Categorization I
 ➢ Global Representations
 ➢ Sliding Window based Object Detection
• Local Features & Matching
 ➢ Local Features - Detection and Description
 ➢ Recognition with Local Features
• Object Categorization II
 ➢ Part based Approaches
 ➢ Deep Learning Approaches
• 3D Reconstruction
• Motion and Tracking
Recap: Sliding-Window Object Detection

- If object may be in a cluttered scene, slide a window around looking for it.

- Essentially, this is a brute-force approach with many local decisions.

Slide credit: Kristen Grauman
Classifier Construction: Many Choices...

Nearest Neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005,
Boiman, Shechtman, Irani 2008, ...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
...

Support Vector Machines

Vapnik, Schölkopf 1995,
Papageorgiou, Poggio ‘01,
Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

Randomized Forests

Amit, Geman 1997,
Breiman 2001,
Lepetit, Fua 2006,
Gall, Lempitsky 2009,...
Recap: AdaBoost

Final classifier is combination of the weak classifiers

Slide credit: Kristen Grauman

B. Leibe
Recap: AdaBoost Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates **positive** (faces) and **negative** (non-faces) training examples, in terms of **weighted** error.

Resulting weak classifier:

\[
\begin{align*}
h_t(x) &= \begin{cases}
+1 & \text{if } f_t(x) > \theta_t \\
-1 & \text{otherwise}
\end{cases}
\end{align*}
\]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

Slide credit: Kristen Grauman

[Viola & Jones, CVPR 2001]
Recap: Viola-Jones Face Detector

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]

Slide credit: Kristen Grauman
Topics of This Lecture

• Local Invariant Features
 ▶ Motivation
 ▶ Requirements, Invariances

• Keypoint Localization
 ▶ Harris detector
 ▶ Hessian detector

• Scale Invariant Region Selection
 ▶ Automatic scale selection
 ▶ Laplacian-of-Gaussian detector
 ▶ Difference-of-Gaussian detector
 ▶ Combinations

• Local Descriptors
 ▶ Orientation normalization
 ▶ SIFT
Motivation

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions
 - Articulation
 - Intra-category variations
Application: Image Matching

by Diva Sian

by swashford

Slide credit: Steve Seitz
Harder Case

by Diva Sian

by scgbt

Slide credit: Steve Seitz
Harder Still?

NASA Mars Rover images

Slide credit: Steve Seitz
Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Slide credit: Steve Seitz
Application: Image Stitching
Application: Image Stitching

- Procedure:
 - Detect feature points in both images
Application: Image Stitching

- Procedure:
 - Detect feature points in both images
 - Find corresponding pairs
Application: Image Stitching

• Procedure:
 - Detect feature points in both images
 - Find corresponding pairs
 - Use these pairs to align the images
General Approach

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors

\[d(f_A, f_B) < T \]
Common Requirements

• Problem 1:
 ➢ Detect the same point *independently* in both images

No chance to match!

We need a repeatable detector!

Slide credit: Darya Frolova, Denis Simakov
Common Requirements

• Problem 1:
 - Detect the same point *independently* in both images

• Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!
Invariance: Geometric Transformations

Slide credit: Steve Seitz
Levels of Geometric Invariance
Requirements

• Region extraction needs to be repeatable and accurate
 ➢ Invariant to translation, rotation, scale changes
 ➢ Robust or covariant to out-of-plane (≈affine) transformations
 ➢ Robust to lighting variations, noise, blur, quantization

• Locality: Features are local, therefore robust to occlusion and clutter.

• Quantity: We need a sufficient number of regions to cover the object.

• Distinctiveness: The regions should contain “interesting” structure.

• Efficiency: Close to real-time performance.
Many Existing Detectors Available

- Hessian & Harris [Beaudet ‘78], [Harris ‘88]
- Laplacian, DoG [Lindeberg ‘98], [Lowe ‘99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
- EBR and IBR [Tuytelaars & Van Gool ‘04]
- MSER [Matas ‘02]
- Salient Regions [Kadir & Brady ‘01]
- Others...

Those detectors have become a basic building block for many recent applications in Computer Vision.
Keypoint Localization

- Goals:
 - Repeatable detection
 - Precise localization
 - Interesting content

⇒ Look for two-dimensional signal changes
Finding Corners

• Key property:
 ➢ In the region around a corner, image gradient has two or more dominant directions

• Corners are *repeatable* and *distinctive*

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Slide credit: Svetlana Lazebnik
Corners as Distinctive Interest Points

- Design criteria
 - We should easily recognize the point by looking through a small window (locality)
 - Shifting the window in any direction should give a large change in intensity (good localization)

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Slide credit: Alexej Efros
Harris Detector Formulation

- Change of intensity for the shift \([u,v]\):

\[
E(u, v) = \sum_{x, y} w(x, y) \left[I(x + u, y + v) - I(x, y) \right]^2
\]

Window function

Shifted intensity

Intensity

Window function \(w(x,y) = 1 \text{ in window, 0 outside} \) or Gaussian

Slide credit: Rick Szeliski
Harris Detector Formulation

- This measure of change can be approximated by:

\[
E(u, v) \approx [u \ v] M [u \ v]^T
\]

where \(M\) is a 2x2 matrix computed from image derivatives:

\[
M = \sum_{x,y} w(x, y) \begin{bmatrix}
I_x^2 & I_x I_y \\
I_x I_y & I_y^2
\end{bmatrix}
\]

Sum over image region - the area we are checking for corner

\[
M = \begin{bmatrix}
\sum I_x I_x & \sum I_x I_y \\
\sum I_x I_y & \sum I_y I_y
\end{bmatrix} = \sum \begin{bmatrix}
I_x \\
I_y
\end{bmatrix} [I_x \ I_y]
\]

Gradient with respect to \(x\), times gradient with respect to \(y\)

Slide credit: Rick Szeliski

B. Leibe
Harris Detector Formulation

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Sum over image region - the area we are checking for corner
- Gradient with respect to x, times gradient with respect to y
What Does This Matrix Reveal?

- First, let’s consider an axis-aligned corner:
What Does This Matrix Reveal?

• First, let’s consider an axis-aligned corner:

\[
M = \begin{bmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{bmatrix} = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\]

• This means:

 - Dominant gradient directions align with \(x\) or \(y\) axis
 - If either \(\lambda\) is close to 0, then this is not a corner, so look for locations where both are large.

• What if we have a corner that is not aligned with the image axes?

Slide credit: David Jacobs
General Case

• Since M is symmetric, we have

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

(Eigenvalue decomposition)

• We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R
Interpreting the Eigenvalues

- Classification of image points using eigenvalues of M:

 - \(\lambda_1 \) and \(\lambda_2 \) are small; \(E \) is almost constant in all directions.

 - "Corner" \(\lambda_1 \) and \(\lambda_2 \) are large, \(\lambda_1 \sim \lambda_2 \); \(E \) increases in all directions.

 - "Edge" \(\lambda_2 \gg \lambda_1 \)

 - "Edge" \(\lambda_1 \gg \lambda_2 \)

 - "Flat" region

Slide credit: Kristen Grauman
Corner Response Function

\[R = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

- Fast approximation
 - Avoid computing the eigenvalues
 - \(\alpha \): constant (0.04 to 0.06)

Slide credit: Kristen Grauman
Window Function $w(x,y)$

$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- **Option 1: uniform window**
 - Sum over square window
 $$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 - Problem: not rotation invariant

- **Option 2: Smooth with Gaussian**
 - Gaussian already performs weighted sum
 $$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 - Result is rotation invariant
Summary: Harris Detector [Harris88]

- Compute second moment matrix (autocorrelation matrix)

\[M(\sigma_I, \sigma_D) = g(\sigma_I) \ast \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix} \]

1. Image derivatives
2. Square of derivatives
3. Gaussian filter \(g(\sigma_I) \)

4. Cornerness function - two strong eigenvalues

\[R = \det[M(\sigma_I, \sigma_D)] - \alpha[\text{trace}(M(\sigma_I, \sigma_D))]^2 \]

\[= g(I_x^2)g(I_y^2) - [g(I_x I_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2 \]

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk
Harris Detector: Workflow
Harris Detector: Workflow

- Compute corner responses R

Slide adapted from Darya Frolova, Denis Simakov B. Leibe
Harris Detector: Workflow

- Take only the local maxima of R, where $R > \text{threshold}$.

Slide adapted from Darya Frolova, Denis Simakov B. Leibe
Harris Detector: Workflow

- Resulting Harris points

Slide adapted from Darya Frolova, Denis Simakov B. Leibe
Harris Detector - Responses [Harris88]

Effect: A very precise corner detector.

Slide credit: Krystian Mikolajczyk
Harris Detector - Responses [Harris88]
Harris Detector - Responses [Harris88]

- Results are well suited for finding stereo correspondences

Slide credit: Kristen Grauman
Harris Detector: Properties

- Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response R is invariant to image rotation
Harris Detector: Properties

- Rotation invariance
- Scale invariance?

Not invariant to image scale!
Hessian Detector [Beaudet78]

- Hessian determinant

\[Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix} \]

Intuition: Search for strong derivatives in two orthogonal directions

Note: these are 2nd derivatives!
Hessian Detector [Beaudet78]

- **Hessian determinant**

\[
\text{Hessian}(I) = \begin{bmatrix}
I_{xx} & I_{xy} \\
I_{xy} & I_{yy}
\end{bmatrix}
\]

\[
\det(\text{Hessian}(I)) = I_{xx}I_{yy} - I_{xy}^2
\]

In Matlab:

\[
I_{xx}.*I_{yy} - (I_{xy})^2
\]

Slide credit: Krystian Mikolajczyk
Hessian Detector - Responses [Beaudet78]

Effect: Responses mainly on corners and strongly textured areas.

Slide credit: Krystian Mikolajczyk
Hessian Detector - Responses [Beaudet78]
Topics of This Lecture

• Local Invariant Features
 ➢ Motivation
 ➢ Requirements, Invariances

• Keypoint Localization
 ➢ Harris detector
 ➢ Hessian detector

• Scale Invariant Region Selection
 ➢ Automatic scale selection
 ➢ Laplacian-of-Gaussian detector
 ➢ Difference-of-Gaussian detector
 ➢ Combinations

• Local Descriptors
 ➢ Orientation normalization
 ➢ SIFT
From Points to Regions...

- The Harris and Hessian operators define interest points.
 - Precise localization
 - High repeatability

- In order to compare those points, we need to compute a descriptor over a region.
 - How can we define such a region in a scale invariant manner?

- *I.e. how can we detect scale invariant interest regions?*
Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

\[d(f_A, f_B) \]
Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

\[
\begin{align*}
 d(f_A, f_B) &
\end{align*}
\]
Naïve Approach: Exhaustive Search

- **Multi-scale procedure**
 - Compare descriptors while varying the patch size

\[
d(f_A, f_B) = \text{Similarity measure}
\]

Slide credit: Krystian Mikolajczyk
Naïve Approach: Exhaustive Search

- Multi-scale procedure
 - Compare descriptors while varying the patch size

\[
d(f_A, f_B) = e.g. \text{color}
\]
Naïve Approach: Exhaustive Search

- Comparing descriptors while varying the patch size
 - Computationally inefficient
 - Inefficient but possible for matching
 - Prohibitive for retrieval in large databases
 - Prohibitive for recognition

\[d(f_A, f_B) \]

Slide credit: Krystian Mikolajczyk
Automatic Scale Selection

- **Solution:**
 - Design a function on the region, which is “scale invariant” (the same for corresponding regions, even if they are at different scales)
 - Example: average intensity. For corresponding regions (even of different sizes) it will be the same.
 - For a point in one image, we can consider it as a function of region size (patch width)

Slide credit: Kristen Grauman
Automatic Scale Selection

• Common approach:
 - Take a local maximum of this function.
 - Observation: region size for which the maximum is achieved should be *invariant* to image scale.

Important: this scale invariant region size is found in each image *independently*!
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1 \ldots i_m}(x, \sigma)) \]

\[f(I_{i_1 \ldots i_m}(x', \sigma)) \]

Slide credit: Krystian Mikolajczyk

B. Leibe
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i \ldots i_m} (x, \sigma)) \]

\[f(I_{i \ldots i_m} (x', \sigma)) \]
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i\ldots j_m} (x, \sigma)) \]

\[f(I_{i\ldots j_m} (x', \sigma)) \]

Slide credit: Krystian Mikolajczyk
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{x_1} \ldots I_{x_m}, (x, \sigma)) \]

\[f(I_{x_1} \ldots I_{x_m}, (x', \sigma')) \]
Automatic Scale Selection

- Normalize: Rescale to fixed size
What Is A Useful Signature Function?

- Laplacian-of-Gaussian = “blob” detector
Characteristic Scale

- We define the *characteristic scale* as the scale that produces peak of Laplacian response.

Slide credit: Svetlana Lazebnik
Laplacian-of-Gaussian (LoG)

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

\[
L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^3
\]

Slide adapted from Krystian Mikolajczyk
Laplacian-of-Gaussian (LoG)

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

Slide adapted from Krystian Mikolajczyk
Laplacian-of-Gaussian (LoG)

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

\[L_{xx}(\sigma) + L_{yy}(\sigma) \]

Slide adapted from Krystian Mikolajczyk
Laplacian-of-Gaussian (LoG)

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

\[L_{xx}(\sigma) + L_{yy}(\sigma) \]

\[\Rightarrow \text{List of } (x, y, \sigma) \]
LoG Detector: Workflow
LoG Detector: Workflow

sigma = 11.9912
LoG Detector: Workflow
Technical Detail

- We can efficiently approximate the Laplacian with a difference of Gaussians:

\[
L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)
\]

(Laplacian)

\[
DoG = G(x, y, k\sigma) - G(x, y, \sigma)
\]

(Difference of Gaussians)
Difference-of-Gaussian (DoG)

• Difference of Gaussians as approximation of the LoG
 - This is used e.g. in Lowe’s SIFT pipeline for feature detection.

• Advantages
 - No need to compute 2nd derivatives
 - Gaussians are computed anyway, e.g. in a Gaussian pyramid.
Key point localization with DoG

- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses

Candidate keypoints: list of \((x, y, \sigma)\)

Slide credit: David Lowe
DoG - Efficient Computation

- Computation in Gaussian scale pyramid

Sampling with step $\sigma^4 = 2$

Original image $\sigma = 2^4$

Scale (first octave)

$\frac{1}{\sigma}$

Scale (next octave)

Gaussian

Difference of Gaussian (DOG)
Results: Lowe’s DoG
Example of Keypoint Detection

(a) 233x189 image
(b) 832 DoG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures (removing edge responses)

Slide credit: David Lowe
Harris-Laplace [Mikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection

Slide adapted from Krystian Mikolajczyk
Harris-Laplace [Mikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian
 (same procedure with Hessian \Rightarrow Hessian-Laplace)

Harris points

Harris-Laplace points
Summary: Scale Invariant Detection

- **Given:** Two images of the same scene with a large *scale difference* between them.
- **Goal:** Find *the same* interest points *independently* in each image.
- **Solution:** Search for *maxima* of suitable functions in *scale* and in *space* (over the image).

- Two strategies
 - Laplacian-of-Gaussian (LoG)
 - Difference-of-Gaussian (DoG) as a fast approximation
 - *These can be used either on their own, or in combinations with single-scale keypoint detectors (Harris, Hessian).*
You Can Try It At Home...

- For most local feature detectors, executables are available online:
 - http://robots.ox.ac.uk/~vgg/research/affine
 - http://www.vision.ee.ethz.ch/~surf
Affine Covariant Features

Affine Covariant Region Detectors

Input Image → Detector output → Image with displayed regions

Parameters defining an affine region

\[u, v, a, b, c \text{ in } a(x-u)(x-u)+2b(x-u)(y-v)+c(y-v)(y-v)-1 \]

with \((0,0)\) at image top left corner

Code

- provided by the authors, see [publications](http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries) for details and links to authors' web sites

Example of use

```bash
prompt>./h_affine.in -h Harraff -i img1.ppm -o Harraff.is -thres 1000
prompt>./h_affine.in -h Harraff -i img1.ppm -o Harraff.is -thres 500
```

Displaying

```bash
matlab>> g
matlab>> g
```

Linux binaries

- Harris-Affine & Hessian-Affine
- MSER - Maximal stable extremal regions (also Windows)
- IEB - Intensity extrema based detector
- EBR - Edge based detector
- Salient region detector

Example of use

```bash
prompt>./mserr.in -t 2 -es 2 -i img1.ppm -o img1.mser
prompt>./ibr.in img1.ppm img1.ibr -scalefactor 1.0
prompt>./ebr.in img1.ppm img1.ebr
prompt>./salient.in img1.ppm img1.sal
```

Displaying

```bash
matlab>> g
matlab>> g
matlab>> g
```
References and Further Reading

- Read David Lowe’s SIFT paper
 - D. Lowe, *Distinctive image features from scale-invariant keypoints*, *IJCV* 60(2), pp. 91-110, 2004

- Good survey paper on Int. Pt. detectors and descriptors

- Try the example code, binaries, and Matlab wrappers
 - Good starting point: Oxford interest point page [http://www.robots.ox.ac.uk/~vgg/research/affine detectors.html#binaries](http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries)