Computer Vision - Lecture 5
Structure Extraction
10.11.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline
• Image Processing Basics
 - Image Formation
 - Binary Image Processing
 - Linear Filters
 - Edge & Structure Extraction
• Segmentation
• Local Features & Matching
• Object Recognition and Categorization
• 3D Reconstruction
• Motion and Tracking

Topics of This Lecture
• Recap: Edge detection
 - Image gradients
 - Canny edge detector
• Fitting as template matching
 - Distance transform
 - Chamfer matching
 - Application: traffic sign detection
• Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform

Recap: The Gaussian Pyramid
Low resolution
High resolution

Recap: 2D Edge Detection Filters
Gaussian
\[G(x, y) = \frac{1}{2\pi \sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]
Derivative of Gaussian
\[\frac{\partial}{\partial x} h(x, y) = \frac{\partial}{\partial y} h(x, y) \]
Laplacian of Gaussian
\[\nabla^2 h(x, y) = \frac{\partial^2 h(x, y)}{\partial x^2} + \frac{\partial^2 h(x, y)}{\partial y^2} \]

Recap: Derivatives and Edges...
1st derivative
2nd derivative
“zero crossings” of second derivative

Slide credits: Kristen Grauman
Recap: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
 - Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low
 threshold to continue them

• MATLAB:
 >> edge(image,'canny');
 >> help edge

Edges vs. Boundaries

Edges are useful signals to indicate occluding boundaries, shape.
Here the raw edge output is not so bad...
...but quite often boundaries of interest are fragmented, and we have extra
“clutter” edge points.

Fitting

• Want to associate a model with observed features

Fitting as Template Matching

• We’ve already seen that correlation filtering can be
 used for template matching in an image.

• Let’s try this idea with “edge templates”.
 - Example: traffic sign detection in (grayvalue) video.

Topics of This Lecture

• Recap: Edge detection
 - Image gradients
 - Canny edge detector
• Fitting as template matching
 - Distance transform
 - Chamfer matching
 - Application: traffic sign detection
• Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform

Edge Templates

• Correlation filtering
 - Correlation between edge pixels in template and image
 \[D_{corr}(x, y) = -\sum_{u,v} T[u,v]I[x+u, y+v] \]
 - Unfortunately, this doesn’t work at all... Why?
 \[\Rightarrow \text{Zero correlation score if the edge template is 1 pixel off...} \]
Edge Templates

- Better: Chamfer Distance
 - Average distance to nearest edge pixel
 \[D_{\text{Chamfer}}(x, y) = \frac{1}{T} \sum_{u,v \in T(x, y)} d_t(x + u, y + v) \]
 - More robust to small shifts and size variations.
- How can we compute this efficiently?

Distance Transform

- Image reflecting distance to nearest point in point set (e.g., edge pixels, or foreground pixels).

Distance Transform Algorithm (1D)

- Two-pass O(n) algorithm for 1D L_1 norm
 1. **Initialize**: For all j
 - \(D[j] \leftarrow 1 \) if \(j \) is in \(P \), infinity otherwise
 2. **Forward**: For \(j \) from 1 up to \(n-1 \)
 - \(D[j] \leftarrow \min(D[j], D[j-1]+1) \)
 3. **Backward**: For \(j \) from \(n-2 \) down to 0
 - \(D[j] \leftarrow \min(D[j], D[j+1]+1) \)

Distance Transform Algorithm (2D)

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to the left
 - Bwd pass finds closest below and to the right

Chamfer Matching

- Chamfer Distance
 - Average distance to nearest feature
 \[D_{\text{Chamfer}}(T_f, T_t) = \frac{1}{|T_t|} \sum_{f \in T_t} d_t(f) \]
 - This can be computed efficiently by correlating the edge template with the distance-transformed image.
Chamfer Matching

- Efficient implementation
 - Instead of correlation, sample fixed number of points on template contour.
 - Chamfer score boils down to series of DT lookups.
 \[D_{chamfer}(T, I) = \frac{1}{|T|} \sum_{t \in T} d_f(t) \]
 - Computational effort independent of scale.

Chamfer Matching for Pedestrian Detection

- Organize templates in tree structure for fast matching

Summary Chamfer Matching

- Pros
 - Fast and simple method for matching edge-based templates.
 - Works well for matching upright shapes with little intra-class variation.
 - Good method for finding candidate matches in a longer recognition pipeline.

- Cons
 - Chamfer score averages over entire contour, not very discriminative in practice.
 - Further verification needed.
 - Low matching cost in cluttered regions with many edges.
 - Many false positive detections.
 - In order to detect rotated & rescaled shapes, need to match with rotated & rescaled templates which can get very expensive.

Topics of This Lecture

- Recap: Edge detection
 - Image gradients
 - Canny edge detector
- Fitting as template matching
 - Distance transform
 - Chamfer matching
 - Application: traffic sign detection
- Fitting as parametric search
 - Line detection
 - Hough transform
 - Extension to circles
 - Generalized Hough transform
Fitting as Search in Parametric Space

- Choose a parametric model to represent a set of features.
- Membership criterion is not local.
 - Can’t tell whether a point belongs to a given model just by looking at that point.
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important.
 - It is infeasible to examine every possible set of parameters and every possible combination of features.

Example: Line Fitting

- Why fit lines?
 - Many objects are characterized by presence of straight lines.
- Wait, why aren’t we done just by running edge detection?

Difficulty of Line Fitting

- Extra edge points (clutter), multiple models:
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

Voting

- It’s not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of “good” features.
- Ok if some features not observed, as model can span multiple fragments.

Fitting Lines

- Given points that belong to a line, what is the line?
- How many lines are there?
- Which points belong to which lines?

- The Hough Transform is a voting technique that can be used to answer all of these.
- Main idea:
 1. Vote for all possible lines on which each edge point could lie.
 2. Look for lines that get many votes.

Finding Lines in an Image: Hough Space

- Connection between image \((x, y)\) and Hough \((m, b)\) spaces.
 - A line in the image corresponds to a point in Hough space.
 - To go from image space to Hough space:
 - Given a set of points \((x, y)\), find all \((m, b)\) such that \(y = mx + b\).
Finding Lines in an Image: Hough Space

- Connection between image \((x,y)\) and Hough \((m,b)\) spaces
 - A line in the image corresponds to a point in Hough space.
 - To go from image space to Hough space:
 - Given a set of points \((x,y)\), find all \((m,b)\) such that \(y = mx + b\).
 - What does a point \((x_0,y_0)\) in the image space map to?
 - Answer: the solutions of \(b = -x_0m + y_0\)
 - This is a line in Hough space.

Finding Lines in an Image: Hough Space

- How can we use this to find the most likely parameters \((m,b)\) for the most prominent line in the image space?
 - Let each point in image space vote for a set of possible parameters in Hough space.
 - Accumulate votes in a discrete set of bins; parameters with the most votes indicate line in image space.

Hough Transform Algorithm

Using the polar parameterization:

\[
x \cos \theta + y \sin \theta = d
\]

Basic Hough transform algorithm
1. Initialize \(H[d,\theta] = 0\).
2. For each edge point \((x,y)\) in the image
 - for \(\theta = 0\) to \(180\)
 - some quantization
 - \(d = x \cos \theta + y \sin \theta\)
 - \(H[d, \theta] += 1\)
3. Find the value(s) of \((d,\theta)\) where \(H[d,\theta]\) is maximal.
4. The detected line in the image is given by \(d = x \cos \theta + y \sin \theta\)

Polar Representation for Lines

- Issues with usual \((m,b)\) parameter space: can take on infinite values, undefined for vertical lines.

- Point in image space \(\Rightarrow\) Sinusoid segment in Hough space

Example: HT for Straight Lines

\[
d : \text{perpendicular distance from line to origin}
\]
\[
\theta : \text{angle the perpendicular makes with the x-axis}
\]

Example: HT for Straight Lines
Real-World Examples

![Real-World Examples Image](image)

Slide credit: Kristen Grauman

Impact of Noise on Hough Transform

Image space

- edge coordinates
- Votes

What difficulty does this present for an implementation?

Slide credit: David Lowe

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point \(I(x, y) \) in the image:
 \[
 \theta = \text{gradient at } (x, y)
 \]
 \[
 d = x \cos \theta - y \sin \theta
 \]
 \[
 H[d, \theta] += 1
 \]
3. same
4. same

(Reduces degrees of freedom)

Slide credit: Kristen Grauman

Impact of Noise on Hough Transform

Image space

- edge coordinates
- Votes

Here, everything appears to be “noise”, or random edge points, but we still see peaks in the vote space.

Slide credit: David Lowe

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point \(I(x, y) \) in the image:
 compute unique \((d, \theta)\) based on image gradient at \((x, y)\)
 \[
 H[d, \theta] += 1
 \]
3. same
4. same

(Reduces degrees of freedom)

Extension 2

Give more votes for stronger edges (use magnitude of gradient)

Extension 3

Change the sampling of \((d, \theta)\) to give more/less resolution

Extension 4

The same procedure can be used with circles, squares, or any other shape...

Slide credit: Kristen Grauman

Hough Transform for Circles

- Circle: center \((a, b)\) and radius \(r\)
 \[(x - a)^2 + (y - b)^2 = r^2\]
- For a fixed radius \(r\), unknown gradient direction

\[
b = y + r \sin(\theta)
\]
\[
a = x - r \cos(\theta)
\]
\[
H[a, b, r] += 1
\]
end
end

Intersection: most votes for center occur here.

Slide credit: Kristen Grauman

B. Leibe
Example: Detecting Circles with Hough

Crosshair indicates results of Hough transform, bounding box found via motion differencing.

Example: Detecting Circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Voting: Practical Tips

- Minimize irrelevant tokens first (take edge points with significant gradient magnitude)
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Vote for neighbors, also (smoothing in accumulator array)
- Utilize direction of edge to reduce free parameters by 1
- To read back which points voted for “winning” peaks, keep tags on the votes.

Hough Transform: Pros and Cons

Pros
- All points are processed independently, so can cope with occlusion
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- Can detect multiple instances of a model in a single pass

Cons
- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: hard to pick a good grid size

Generalized Hough Transform

- What if want to detect arbitrary shapes defined by boundary points and a reference point?

At each boundary point, compute displacement vector: \(r = a - p_i \).

For a given model shape: store these vectors in a table indexed by gradient orientation \(\theta \).

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
Generalized Hough Transform

To detect the model shape in a new image:

- For each edge point
 - Index into table with its gradient orientation θ
 - Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Example: Generalized Hough Transform

Say we've already stored a table of displacement vectors as a function of edge orientation for this model shape.

Example: Generalized Hough Transform

Now we want to look at some edge points detected in a new image, and vote on the position of that shape.

Example: Generalized Hough Transform

Range of voting locations for test point

Example: Generalized Hough Transform

Votes for points with $\theta = \uparrow$
Example: Generalized Hough Transform

Displacement vectors for model points

Range of voting locations for test point

Example: Generalized Hough Transform

Votes for points with $\theta = \pi/4$

Application in Recognition

- Instead of indexing displacements by gradient orientation, index by “visual codeword”.

Training image

Visual codeword with displacement vectors

Test image

Application in Recognition

- We’ll hear more about this method in lecture 14...

References and Further Reading

- Background information on edge detection can be found in Chapter 8 of

- Read Ballard & Brown’s description of the Generalized Hough Transform in Chapter 4.3 of
 - D.H. Ballard & C.M. Brown, Computer Vision, Prentice Hall, 1982 (available from the class homepage)

- Try the Hough Transform demo at http://www.dis.uniroma1.it/~iocchi/slides/icra2001/java/hough.html