Binary Image Analysis

- Just two pixel values
- Foreground and background
- Regions of interest

Uses: Industrial Inspection

Uses: Document Analysis, Text Recognition

Handwritten digits

Natural text (after detection)

Uses: Medical/Bio Data

Source: D. Kim et al., Cytometry 35(1), 1999

Announcements

- Course webpage
 - http://www.vision.rwth-aachen.de/teaching/
 - Slides will be made available on the webpage

- L2P electronic repository
 - Exercises and supplementary materials will be posted on the L2P

- Please subscribe to the lecture on the Campus system!
 - Important to get email announcements and L2P access!
 - Bachelor students please also subscribe
Uses: Blob Tracking & Motion Analysis

- Frame Differencing
- Background Subtraction

Uses: Shape Analysis, Free-Viewpoint Video

- Visual Hull Reconstruction
- Silhouette
- Medial axis

Uses: Intensity Based Detection

- Looking for dark pixels...
 $fg_pix = \text{find}(im < 65)$

Uses: Color Based Detection

- Looking for pixels within a certain color range...
 $fg_pix = \text{find}(\text{hue} > t1 \text{ and hue} < t2)$

Issues

- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object
- What to do with “noisy” binary outputs?
 - Holes
 - Extra small fragments

Outline of Today’s Lecture

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract individual objects
 - Connected Components Labeling
- Describe the objects
 - Region properties
Thresholding

- Grayscale image \(\Rightarrow\) Binary mask
- Different variants
 - One-sided
 \[F_j[k,j] = \begin{cases} 1, & \text{if } F_j[k,j] \geq T \\ 0, & \text{otherwise} \end{cases} \]
 - Two-sided
 \[F_j[k,j] = \begin{cases} 1, & \text{if } T_1 \leq F_j[k,j] \leq T_2 \\ 0, & \text{otherwise} \end{cases} \]
 - Set membership
 \[F_j[k,j] = \begin{cases} 1, & \text{if } F_j[k,j] \in Z \\ 0, & \text{otherwise} \end{cases} \]

Selecting Thresholds

- Typical scenario
 - Separate an object from a distinct background
- Try to separate the different grayvalue distributions
 - Partition a bimodal histogram
 - Fit a parametric distribution (e.g. Mixture of Gaussians)
 - Dynamic or local thresholds
- In the following, I will present some simple methods.
- We will then see some more general methods in Lecture 6…

A Nice Case: Bimodal Intensity Histograms

- Ideal histogram, light object on dark background
- Actual observed histogram with noise

Not so Nice Cases...

- How to separate those?
 - Two distinct modes
 - Overlapping modes
 - Multiple modes

Threshold selection is difficult in the general case
 - Domain knowledge often helps
 - E.g. Fraction of text on a document page (\(\Rightarrow\) histogram quantile)
 - E.g. Size of objects/structure elements

Global Binarization [Otsu’79]

- Search for the threshold \(T\) that minimizes the within-class variance \(\sigma\) of the two classes separated by \(T\)
 \[\sigma_{\text{within}}(T) = n_1(T)\sigma_1^2 + n_2(T)\sigma_2^2(T) \]
 where
 \[n_1(T) = |\{I(x,y) < T\}|, \quad n_2(T) = |\{I(x,y) \geq T\}| \]
 - This is the same as maximizing the between-class variance \(\sigma\)
 \[\sigma_{\text{between}}(T) = \sigma^2 - \sigma_{\text{within}}(T) = n_1(T)n_2(T)|\mu_1(T) - \mu_2(T)|^2 \]

Algorithm

1. Precompute a cumulative grayvalue histogram \(h\).
2. For each potential threshold \(T\)
 a) Separate the pixels into two clusters according to \(T\)
 b) Look up \(n_1, n_2\) in \(h\) and compute both cluster means
 c) Compute \(\sigma_{\text{between}}(T) = n_1(T)n_2(T)|\mu_1(T) - \mu_2(T)|^2\)
3. Choose
 \[T^* = \arg \max_T \left[\sigma_{\text{between}}(T) \right] \]
Local Binarization [Niblack’86]

- Estimate a local threshold within a small neighborhood window W

$$T_W = \mu_W + k \cdot \sigma_W$$

where $k \in [-1, 0]$ is a user-defined parameter.

Effect:

What is the hidden assumption here?

Additional Improvements

- Document images often contain a smooth gradient

⇒ Try to fit that gradient with a polynomial function

Polynomial Surface Fitting

- Polynomial surface of degree d

$$f(x, y) = \sum_{i+j=d} b_{ij} x^i y^j$$

- For an image pixel (x_0, y_0) with intensity I_0, this means

$$b_{0,0} + b_{1,0} x_0 + b_{0,1} y_0 + b_{2,0} x_0^2 + b_{1,1} x_0 y_0 + \cdots + b_{0,3} y_3 = I_0$$

- Least-squares estimation, e.g. for $d = 3$

$$\mathbf{Ab} = \mathbf{I}$$

Solution with pseudo-inverse:

$$\mathbf{b} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{I}$$

Matlab (using SVD):

$$\mathbf{b} = \mathbf{I} \setminus \mathbf{A}$$

Surface Fitting

- Iterative Algorithm

1.) Fit parametric surface to all points in region.
2.) Subtract estimated surface.
3.) Apply global threshold (e.g. with Otsu method)
4.) Fit surface to all background pixels in original region.
5.) Subtract estimated surface.
6.) Apply global threshold (Otsu)
7.) Iterate further if needed...

- The first pass also takes foreground pixels into account.
 - This is corrected in the following passes.
 - Basic assumption here: most pixels belong to the background.

Result Comparison

Original image

Global (Otsu)

Polynomial + Global

Local (Niblack)
Outline of Today’s Lecture
• Convert the image into binary form
 - Thresholding
• Clean up the thresholded image
 - Morphological operators
• Extract individual objects
 - Connected Components Labeling
• Describe the objects
 - Region properties

Cleaning the Binarized Results
• Results of thresholding often still contain noise

Morphological Operators
• Basic idea
 - Scan the image with a structuring element
 - Perform set operations (intersection, union) of image content with structuring element
• Two basic operations
 - Dilation (Matlab: imdilate)
 - Erosion (Matlab:imerode)
• Several important combinations
 - Opening (Matlab: imopen)
 - Closing (Matlab: imclose)
 - Boundary extraction

Dilation
• Definition
 - “The dilation of A by B is the set of all displacements z, such that (B) and A overlap by at least one element.”
 - (B) is the mirrored version of B, shifted by z
• Effects
 - If current pixel z is foreground, set all pixels under (B) to foreground.
 - Grow features
 - Fill holes

Erosion
• Definition
 - “The erosion of A by B is the set of all displacements z, such that (B) is entirely contained in A.”
• Effects
 - If not every pixel under (B) is foreground, set the current pixel z to background.
 - Erode connected components
 - Shrink features
 - Remove bridges, branches, noise

Effects
Original image
Dilation with circular structuring element
Erosion with circular structuring element
Effects

- **Opening**
 - Definition: Sequence of Erosion and Dilation
 \[A \cdot B = (A \ominus B) \oplus B \]
 - Effect:
 \[A \cdot B \] is defined by the points that are reached if \(B \) is rolled around inside \(A \).
 \[\Rightarrow \text{Remove small objects, keep original shape.} \]

- **Closing**
 - Definition: Sequence of Dilation and Erosion
 \[A \ast B = (A \oplus B) \ominus B \]
 - Effect:
 \[A \ast B \] is defined by the points that are reached if \(B \) is rolled around on the outside of \(A \).
 \[\Rightarrow \text{Fill holes, keep original shape.} \]

Effect of Opening

- Feature selection through size of structuring element
- Feature selection through shape of structuring element

Effect of Closing

- Fill holes in thresholded image (e.g., due to specularities)

Image Source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
Example Application: Opening + Closing

Original image	Opening	Closing
Eroded image | Dilated image

Structuring element

Morphological Boundary Extraction

- **Definition**
 - First erode \(A \) by \(B \), then subtract the result from the original \(A \).

 \[
 f(A) = A - (A \ominus B)
 \]

- **Effects**
 - If a 3x3 structuring element is used, this results in a boundary that is exactly 1 pixel thick.

Application: Blob Tracking

Absolute differences from frame to frame

Thresholding

Morphology Operators on Grayscale Images

- **Sidenote**
 - Dilation and erosion are typically performed on binary images.
 - If image is grayscale: for dilation take the neighborhood max, for erosion take the min.

Original Dilated Eroded
Outline of Today’s Lecture

• Convert the image into binary form
 - Thresholding
• Clean up the thresholded image
 - Morphological operators
• Extract individual objects
 - Connected Components Labeling
• Describe the objects
 - Region properties

Connected Components Labeling

• Goal: Identify distinct regions

Connected Components Examples

Connectedness

• Which pixels are considered neighbors?

Sequential Connected Components

• Labeling a pixel only requires to consider its prior and superior neighbors.
• It depends on the type of connectivity used for foreground (4-connectivity here).

Sequential Connected Components (2)

• Process the image from left to right, top to bottom:
 1.) If the next pixel to process is 1
 a.) If only one of its neighbors (top or left) is 1, copy its label.
 b.) If both are 1 and have the same label, copy it.
 c.) If they have different labels
 i.) Copy the label from the left.
 ii.) Update the equivalence table.
 2.) Otherwise, assign a new label.
Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
 1. If the next pixel to process is 1:
 i.) If only one of its neighbors (top or left) is 1, copy its label.
 ii.) If both are 1 and have the same label, copy it.
 iii.) If they have different labels:
 - Copy the label from the left.
 - Update the equivalence table.
 iv.) Otherwise, assign a new label.

 Equivalence table
 (1) (2)

Slide credit: J. Neira

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
 1. If the next pixel to process is 1:
 i.) If only one of its neighbors (top or left) is 1, copy its label.
 ii.) If both are 1 and have the same label, copy it.
 iii.) If they have different labels:
 - Copy the label from the left.
 - Update the equivalence table.
 iv.) Otherwise, assign a new label.

 Equivalence table
 (1) (2)

Slide credit: J. Neira

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
 1. If the next pixel to process is 1:
 i.) If only one of its neighbors (top or left) is 1, copy its label.
 ii.) If both are 1 and have the same label, copy it.
 iii.) If they have different labels:
 - Copy the label from the left.
 - Update the equivalence table.
 iv.) Otherwise, assign a new label.

 Equivalence table
 (1) (2)

Slide credit: J. Neira

Sequential Connected Components (2)

- Process the image from left to right, top to bottom:
 1. If the next pixel to process is 1:
 i.) If only one of its neighbors (top or left) is 1, copy its label.
 ii.) If both are 1 and have the same label, copy it.
 iii.) If they have different labels:
 - Copy the label from the left.
 - Update the equivalence table.
 iv.) Otherwise, assign a new label.

 Equivalence table
 (1) (2)

Slide credit: J. Neira

Application: Segmentation of a Liver

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract individual objects
 - Connected Components Labeling
- Describe the objects
 - Region properties

Slide credit: J. Neira

Outline of Today’s Lecture

Slide credit: J. Neira
Region Properties

- From the previous steps, we can obtain separated objects.
- Some useful features can be extracted once we have connected components, including:
 - Area
 - Centroid
 - Extremal points, bounding box
 - Circularity
 - Spatial moments

Area and Centroid

- We denote the set of pixels in a region by \(R \)
- Assuming square pixels, we obtain
 - **Area**: \(A = \sum_{(x,y) \in R} 1 \)
 - **Centroid**: \(\bar{x} = \frac{1}{A} \sum_{(x,y) \in R} x \)
 \(\bar{y} = \frac{1}{A} \sum_{(x,y) \in R} y \)

Circularity

- Measure the deviation from a perfect circle
- **Circularity**: \(C = \frac{\mu_y}{\sigma_y} \)

 where \(\mu_y \) and \(\sigma_y^2 \) are the mean and variance of the distance from the centroid of the shape to the boundary pixels \((x_k, y_k)\).
- **Mean radial distance**: \(\mu_y = \frac{1}{K} \sum_{k=1}^{K} \| (x_k, y_k) - (\bar{x}, \bar{y}) \| \)
- **Variance of radial distance**: \(\sigma_y^2 = \frac{1}{K} \sum_{k=1}^{K} \left(\| (x_k, y_k) - (\bar{x}, \bar{y}) \| - \mu_y \right)^2 \)

Invariant Descriptors

- Often, we want features independent of location, orientation, scale.
- **Feature space distance**

Central Moments

- \(S \) is a subset of pixels (region).
- Central \((j,k)\)th moment defined as:
 \[
 \mu_{jk} = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k
 \]
- Invariant to translation of \(S \).
- Interpretation:
 - 0th central moment: area
 - 2nd central moment: variance
 - 3rd central moment: skewness
 - 4th central moment: kurtosis

Moment Invariants (“Hu Moments”)

- Normalized central moments
 \[
 \eta_{pq} = \frac{\mu_{pq}}{\mu_0^{p+q}}
 \]
 \[\gamma = \frac{p+q+1}{2}\]
- From those, a set of invariant moments can be defined for object description.
 \[
 \phi_1 = \eta_{20} + \eta_{02}
 \]
 \[
 \phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2
 \]
 \[
 \phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{12} - \eta_{03})^2
 \]
 \[
 \phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{12} + \eta_{03})^2
 \]
- Robust to translation, rotation & scaling, but don’t expect wonders (still summary statistics).
Moment Invariants

\[\phi_i = (n_{30} - 3n_{12})(n_{10} + n_{12}) (n_{30} + n_{12})^2 - 3(n_{21} + n_{10})^2 \]
\[+ (3n_{21} - n_{10})(n_{21} + n_{10}) (3(n_{10} + n_{12})^2 - (n_{21} + n_{10})^2) \]
\[\phi_i = (n_{20} - n_{02})(n_{10} + n_{12}) (n_{10} + n_{12})^2 - (n_{21} + n_{10})^2 \]
\[+ 4n_{11}(n_{10} + n_{12})(n_{21} + n_{10}) \]
\[\phi_i = (3n_{21} - n_{10})(n_{10} + n_{12}) (n_{10} + n_{12})^2 - 3(n_{21} + n_{10})^2 \]
\[+ (3n_{12} - n_{10})(n_{21} + n_{10}) (3(n_{10} + n_{12})^2 - (n_{21} + n_{10})^2) \]

Often better to use \(\log_{10}(\phi_i) \) instead of \(\phi_i \) directly...

Axis of Least Second Moment

- Invariance to orientation?
 - Need a common alignment
 - Compute Eigenvectors of 2nd moment matrix (Matlab: eig(A))
 - Axis for which the squared distance to 2D object points is minimized (maximized).
 - \[\begin{bmatrix} \mu_{x0} & \mu_{y1} \\ \mu_{x1} & \mu_{y0} \end{bmatrix} = \mathbf{V} \mathbf{D} \mathbf{V}^T \]
 - \(\mathbf{V} \) is a matrix containing the eigenvectors, \(\mathbf{D} \) is a diagonal matrix containing the eigenvalues

Summary: Binary Image Processing

- Pros
 - Fast to compute, easy to store
 - Simple processing techniques
 - Can be very useful for constrained scenarios

- Cons
 - Hard to get "clean" silhouettes
 - Noise is common in realistic scenarios
 - Can be too coarse a representation
 - Cannot deal with 3D changes

References and Further Reading

- More on morphological operators can be found in
- Online tutorial and Java demos available on

Questions?
You Can Do It At Home…

Accessing a webcam in Matlab:

```matlab
function out = webcam
% uses "Image Acquisition Toolbox"
adaptorName = 'winvideo';
vidFormat = 'I420_320x240';
vidObj1= videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;

cam = webcam();
img=getsnapshot(cam);
```

Questions?