This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations
- Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, RNNs, RBMs, etc.

Recap: Neural Probabilistic Language Model

- Core idea
 - Learn a shared distributed encoding (word embedding) for the words in the vocabulary.

Recap: word2vec

- Goal
 - Make it possible to learn high-quality word embeddings from huge data sets (billions of words in training set).
- Approach
 - Define two alternative learning tasks for learning the embedding:
 - “Continuous Bag of Words” (CBOW)
 - “Skip-gram”
 - Designed to require fewer parameters.

Recap: word2vec CBOW Model

- Continuous BOW Model
 - Remove the non-linearity from the hidden layer
 - Share the projection layer for all words (their vectors are averaged)
 - Bag-of-Words model (order of the words does not matter anymore)

Recap: word2vec Skip-Gram Model

- Continuous Skip-Gram Model
 - Similar structure to CBOW
 - Instead of predicting the current word, predict words within a certain range of the current word.
 - Give less weight to the more distant words
- Implementation
 - Randomly choose a number \(R \in [1, C] \).
 - Use \(R \) words from history and \(R \) words from the future of the current word as correct labels.
 - \(R+R \) word classifications for each input.
Problems with 100k-1M outputs

- Weight matrix gets huge!
 - Example: CBOW model
 - One-hot encoding for inputs
 - Input-hidden connections are just vector lookups.
 - This is not the case for the hidden-output connections!
 - State h is not one-hot, and vocabulary size is 1M.
 - $W_{V \times V}$ has $300 \times 1M$ entries
- Softmax gets expensive!
 - Need to compute normalization over 100k-1M outputs

Recap: Hierarchical Softmax

- Idea
 - Organize words in binary search tree, words are at leaves
 - Factorize probability of word w_0 as a product of node probabilities along the path.
 - Learn a linear decision function $y = v_h(w_0)$ at each node to decide whether to proceed with left or right child node.
 - Decision based on output vector of hidden units directly.

Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
- Problems with RNN Training
 - Vanishing Gradients
 - Exploding Gradients
 - Gradient Clipping

Application: Part-of-Speech Tagging

Application: Predicting the Next Word
Application: Machine Translation

1. French words
2. English words

RNNs: Intuition

- Example: Language modeling
 - Suppose we had the training sequence “cat sat on mat”
 - We want to train a language model
 \[p(\text{next word} | \text{previous words}) \]
 - First assume we only have a finite, 1-word history.
 - I.e., we want those probabilities to be high:
 - \[p(\text{cat} | <S>) \]
 - \[p(\text{sat} | \text{cat}) \]
 - \[p(\text{on} | \text{sat}) \]
 - \[p(\text{mat} | \text{on}) \]
 - \[p(<E> | \text{mat}) \]

RNNs: Intuition

- Vanilla 2-layer classification net
 - 10,001D class scores
 - Softmax over 10k words and a special <END> token
 - \[y_4 = W_{y_4}h_4 \]
 - Hidden layer
 - (e.g., 5000 vectors)
 - \[h_4 = \max [0, W_{\text{h4}}x_4] \]
 - Word embedding
 - (3000 vector for each word)

RNNs: Intuition

- Turning this into an RNN (done!)
 - 10,001D class scores
 - Softmax over 10k words and a special <END> token
 - \[y_4 = W_{y_4}h_4 \]
 - Hidden layer
 - (e.g., 5000 vectors)
 - \[h_4 = \max [0, W_{\text{h4}}x_4 + W_{\text{h4}0}h_3] \]
 - Word embedding
 - (3000 vector for each word)

RNNs: Intuition

- Training this on a lot of sentences would give us a language model.
 - I.e., a way to predict
 - \[p(\text{next word} | \text{previous words}) \]
RNNs: Intuition

• Training this on a lot of sentences would give us a language model.

• I.e., a way to predict

\[p(\text{next word} | \text{previous words}) \]

Slide credit: Andrej Karpathy, Fei-Fei Li
Topics of This Lecture

- Recurrent Neural Networks (RNNs)
 - Motivation
 - Intuition
- Learning with RNNs
 - Formalization
 - Comparison of Feedforward and Recurrent networks
 - Backpropagation through Time (BPTT)
- Problems with RNN Training
 - Vanishing Gradients
 - Exploding Gradients
 - Gradient Clipping

RNNs: Introduction

- RNNs are very powerful, because they combine two properties:
 - Distributed hidden state that allows them to store a lot of information about the past efficiently.
 - Non-linear dynamics that allows them to update their hidden state in complicated ways.
- With enough neurons and time, RNNs can compute anything that can be computed by your computer.

Feedforward Nets vs. Recurrent Nets

- Imagine a feedforward network
 - Assume there is a time delay of 1 in using each connection.
 - This is very similar to how an RNN works.
 - Only change: the layers share their weights.
- The recurrent net is just a feedforward net that keeps reusing the same weights.
Backpropagation with Weight Constraints

- It is easy to modify the backprop algorithm to incorporate linear weight constraints
 - To constrain $w_1 = w_2$, we start with the same initialization and then make sure that the gradients are the same:
 \[\nabla w_1 = \nabla w_2 \n \]
 - We compute the gradients as usual and then use
 \[\frac{\partial E}{\partial w_1} + \frac{\partial E}{\partial w_2} \]
 for both w_1 and w_2.

Recap: Backpropagation Algorithm

- Efficient propagation scheme
 - y_i is already known from forward pass! (Dynamic Programming)
 \[\Rightarrow \text{Propagate back the gradient from layer } j \text{ and multiply with } y_i. \]

Backpropagation Through Time (BPTT)

- Formalization
 - Inputs x_t
 - Outputs y_t
 - Hidden units h_t
 - Initial state h_0
 - Connection matrices W_{xh}, W_{hy}, W_{hh}
 - Configuration $h_t = \sigma (W_{xh} x_t + W_{hy} h_{t-1} + b)$
 \[\hat{y}_t = \text{softmax} (W_{yh} h_t) \]
 - Error function
 \[E = \sum_{t=1}^{T} E_t \]

Backpropagation Through Time (BPTT)

- Backpropagated gradient
 - For weight w_{ij}
 \[\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial h_t} \frac{\partial h_t}{\partial w_{ij}} \]
• Backpropagated gradient
 - For weight w_{ij}:
 $$ \frac{\partial E}{\partial w_{ij}} = \frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial w_{ij}} + \frac{\partial E_{t-1}}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial w_{ij}} + \ldots $$
 - In general:
 $$ \frac{\partial E}{\partial w_{ij}} = \sum_{1 \leq k \leq T} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial w_{ij}} \right) $$

• Analyzing the terms
 - For weight w_{ij}:
 $$ \frac{\partial E}{\partial w_{ij}} = \sum_{1 \leq k \leq T} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial w_{ij}} \right) $$
 - This is the “immediate” partial derivative (with h_0 as constant)

• Summary
 - Backpropagation equations
 $$ E = \sum_{1 \leq t \leq T} \frac{\partial E_t}{\partial w_{ij}} = \sum_{1 \leq k \leq T} \left(\frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-k}} \frac{\partial h_{t-k}}{\partial w_{ij}} \right) $$
 $$ \frac{\partial h_t}{\partial h_k} = \prod_{1 \leq l \leq k} \frac{\partial h_l}{\partial h_{l-1}} = \prod_{1 \leq l \leq k} W_{kl}^T \text{diag}(\sigma'(h_{l-1})) $$

> Remaining issue: how to set the initial state h_0?
> ⇒ Learn this together with all the other parameters.

• Training RNNs is very hard
 - As we backpropagate through the layers, the magnitude of the gradient may grow or shrink exponentially
 - Exploding or vanishing gradient problem!
 - In an RNN trained on long sequences (e.g., 100 time steps) the gradients can easily explode or vanish.
 - Even with good initial weights, it is very hard to detect that the current target output depends on an input from many time-steps ago.
Exploding / Vanishing Gradient Problem

- Consider the propagation equations:

\[
\frac{\partial E}{\partial w_{ij}} = \sum_{t \leq T} \frac{\partial E_t}{\partial h_t} \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial w_{ij}}
\]

\[
\frac{\partial h_t}{\partial h_{t-1}} = \prod_{t \geq k} \frac{\partial h_t}{\partial h_{t-1}} = \prod_{t \geq k} W_{hh}^{t-t_0} \sigma'(h_{t-1})
\]

- If \(t \) goes to infinity and \(l = t - k \).
- We are effectively taking the weight matrix to a high power.
- The result will depend on the eigenvalues of \(W_{hh} \).
 - Largest eigenvalue > 1 \(\Rightarrow \) gradients may explode.
 - Largest eigenvalue < 1 \(\Rightarrow \) gradients will vanish.
- This is very bad...

Why Is This Bad?

- Vanishing gradients in language modeling
 - Words from time steps far away are not taken into consideration when training to predict the next word.

- Example:
 - “Jane walked into the room. John walked in too. It was late in the day. Jane said hi to ____”
 - The RNN will have a hard time learning such long-range dependencies.

Gradient Clipping

- Trick to handle exploding gradients
 - If the gradient is larger than a threshold, clip it to that threshold.

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

```plaintext
if \( \| g \| \geq \text{threshold} \)
then
  \( g \leftarrow \frac{\text{threshold}}{\| g \|} \cdot g \)
end if
```

- This makes a big difference in RNNs

Gradient Clipping Intuition

- Example
 - Error surface of a single RNN neuron
 - High curvature walls
 - Solid lines: standard gradient descent trajectories
 - Dashed lines: gradients rescaled to fixed size

References and Further Reading