Advanced Machine Learning
Lecture 15
Convolutional Neural Networks
11.01.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
This Lecture: **Advanced Machine Learning**

- **Regression Approaches**
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes

- **Learning with Latent Variables**
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations

- **Deep Learning**
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & **Optimization**
 - CNNs, RNNs, RBMs, etc.
Topics of This Lecture

• Tricks of the Trade
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout

• Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

• CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
Recap: Data Augmentation

- **Effect**
 - Much larger training set
 - Robustness against expected variations

- **During testing**
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Augmented training data (from one original image)

Image source: Lucas Beyer
Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- Advisable normalization steps (for MLPs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

Recap: Choosing the Right Learning Rate

- **Convergence of Gradient Descent**
 - Simple 1D example
 \[W^{(\tau-1)} = W^{(\tau)} - \eta \frac{dE(W)}{dW} \]
 - What is the optimal learning rate \(\eta_{\text{opt}} \)?
 - If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian
 \[\eta_{\text{opt}} = \left(\frac{d^2E(W^{(\tau)})}{dW^2} \right)^{-1} \]
 - Advanced optimization techniques try to approximate the Hessian by a simplified form.
 - *If we exceed the optimal learning rate, bad things happen!*

Recap: Advanced Optimization Techniques

- **Momentum**
 - *Instead of using the gradient to change the position of the weight “particle”, use it to change the velocity.*
 - Effect: dampen oscillations in directions of high curvature
 - Nesterov-Momentum: Small variation in the implementation

- **RMS-Prop**
 - *Separate learning rate for each weight: Divide the gradient by a running average of its recent magnitude.*

- **AdaGrad**
- **AdaDelta**
- **Adam**

Some more recent techniques, work better for some problems. Try them.
Trick: Patience

- Saddle points dominate in high-dimensional spaces!

\[\Rightarrow \text{Learning often doesn’t get stuck, you just may have to wait...} \]
Reducing the Learning Rate

- **Final improvement step after convergence is reached**
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

- **Effect**
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.

- **Be careful: Do not turn down the learning rate too soon!**
 - Further progress will be much slower after that.
Topics of This Lecture

• Tricks of the Trade
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout

• Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

• CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
Batch Normalization

[loffe & Szegedy ’14]

• Motivation
 - Optimization works best if all inputs of a layer are normalized.

• Idea
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients.

• Effect
 - Much improved convergence
Dropout

[Srivastava, Hinton ’12]

• Idea
 - Randomly switch off units during training.
 - Change network architecture for each data point, effectively training many different variants of the network.
 - When applying the trained network, multiply activations with the probability that the unit was set to zero.

⇒ Greatly improved performance
Topics of This Lecture

- Tricks of the Trade
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout

- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

B. Leibe
Neural Networks for Computer Vision

• How should we approach vision problems?

• Architectural considerations
 - Input is 2D ⇒ 2D layers of units
 - No pre-segmentation ⇒ Need robustness to misalignments
 - Vision is hierarchical ⇒ Hierarchical multi-layered structure
 - Vision is difficult ⇒ Network should be deep

Face Y/N?
Why Hierarchical Multi-Layered Models?

- **Motivation 1:** Visual scenes are hierarchically organized

- **Object**
 - Object parts
 - Primitive features
 - Input image

- **Face**
 - Eyes, nose, ...
 - Oriented edges
 - Face image

Slide adapted from Richard Turner

B. Leibe
Why Hierarchical Multi-Layered Models?

- Motivation 2: *Biological vision* is hierarchical, too

Object

- Object parts
 - Primitive features
 - Input image

Face

- Eyes, nose, ...
 - Oriented edges
 - Face image

Inferotemporal cortex

- V4: different textures

V1: simple and complex cells

Photoreceptors, retina

Slide adapted from Richard Turner
Inspiration: Neuron Cells
Hubel/Wiesel Architecture

 - Visual cortex consists of a hierarchy of *simple*, *complex*, and *hyper-complex* cells
Why Hierarchical Multi-Layered Models?

- **Motivation 3:** Shallow architectures are inefficient at representing complex functions.

An MLP with 1 hidden layer can implement any function (universal approximator).

However, if the function is deep, a very large hidden layer may be required.
What’s Wrong With Standard Neural Networks?

- **Complexity analysis**
 - How many parameters does this network have?
 \[|\theta| = 3D^2 + D \]
 - For a small 32×32 image
 \[|\theta| = 3 \cdot 32^4 + 32^2 \approx 3 \cdot 10^6 \]

- **Consequences**
 - Hard to train
 - Need to initialize carefully
 - *Convolutional nets reduce the number of parameters!*
Convolutional Neural Networks (CNN, ConvNet)

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Convolutional Networks: Intuition

- Fully connected network
 - E.g. 1000×1000 image
 - 1M hidden units
 - $\Rightarrow 1T$ parameters!

- Ideas to improve this
 - Spatial correlation is local
Convolutional Networks: Intuition

- Locally connected net
 - E.g. 1000×1000 image
 - 1M hidden units
 - 10×10 receptive fields
 \Rightarrow 100M parameters!

- Ideas to improve this
 - Spatial correlation is local
 - Want translation invariance
Convolutional Networks: Intuition

- Convolutional net
 - Share the same parameters across different locations
 - Convolutions with learned kernels

Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato
Convolutional Networks: Intuition

- **Convolutional net**
 - Share the same parameters across different locations
 - Convolutions with learned kernels

- **Learn multiple filters**
 - E.g. 1000x1000 image
 - 100 filters
 - 10x10 filter size
 - \(\Rightarrow 10k \) parameters

- **Result: Response map**
 - size: 1000x1000x100
 - Only memory, not params!

Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato
Important Conceptual Shift

• Before

• Now:
Convolution Layers

- **Note:** Connectivity is
 - Local in space (5×5 inside 32×32)
 - But full in depth (all 3 depth channels)

Example image: $32 \times 32 \times 3$ volume

Before: Full connectivity
$32 \times 32 \times 3$ weights

Now: Local connectivity
One neuron connects to, e.g., $5 \times 5 \times 3$ region.
⇒ Only $5 \times 5 \times 3$ shared weights.
Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth

before: “hidden layer of 200 neurons”
near: “output volume of depth 200”
Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single \([1 \times 1 \times \text{depth}]\) depth column in output volume.

Naming convention:
Convolution Layers

- Replicate this column of hidden neurons across space, with some *stride*.

Example:
7×7 input
assume 3×3 connectivity
stride 1
Convolution Layers

Example:
7 × 7 input
assume 3 × 3 connectivity
stride 1

• Replicate this column of hidden neurons across space, with some stride.
Convolution Layers

• Replicate this column of hidden neurons across space, with some *stride*.

Example:
7×7 input
assume 3×3 connectivity
stride 1
Convolution Layers

- Replicate this column of hidden neurons across space, with some **stride**.

Example:
7×7 input
assume 3×3 connectivity
stride 1
Convolution Layers

Example:
7×7 input
assume 3×3 connectivity
stride 1
⇒ 5×5 output

• Replicate this column of hidden neurons across space, with some stride.
Convolution Layers

Example:
7×7 input
assume 3×3 connectivity
stride 1
⇒ 5×5 output

What about stride 2?

- Replicate this column of hidden neurons across space, with some **stride**.
Convolution Layers

Example:
7×7 input
assume 3×3 connectivity
stride 1
⇒ 5×5 output

What about stride 2?

• Replicate this column of hidden neurons across space, with some stride.
Convolution Layers

Example:
7×7 input
assume 3×3 connectivity
stride 1
⇒ 5×5 output

What about stride 2?
⇒ 3×3 output

- Replicate this column of hidden neurons across space, with some \textit{stride}.
Convolution Layers

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:
- 7×7 input
- Assume 3×3 connectivity
- Stride 1
- ⇒ 5×5 output

What about stride 2?
- ⇒ 3×3 output

- Replicate this column of hidden neurons across space, with some **stride**.
- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.
Activation Maps of Convolutional Filters

Activations:

one filter = one depth slice (or activation map)

Activation maps

Each activation map is a depth slice through the output volume.

5×5 filters

Slide adapted from FeiFei Li, Andrej Karpathy
Effect of Multiple Convolution Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Slide credit: Yann LeCun
Convolutional Networks: Intuition

- Let’s assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?
Convolutional Networks: Intuition

- Let’s assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

- Solution:
 - By **pooling** (e.g., max or avg) filter responses at different spatial locations, we gain robustness to the exact spatial location of features.

Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato
Max Pooling

Effect:
- Make the representation smaller without losing too much information
- Achieve robustness to translations
Max Pooling

- **Note**
 - Pooling happens independently across each slice, preserving the number of slices.

Slide adapted from FeiFei Li, Andrej Karpathy
CNNs: Implication for Back-Propagation

- Convolutional layers
 - Filter weights are shared between locations
 - Gradients are added for each filter location.
Topics of This Lecture

• Tricks of the Trade
 ➢ Recap
 ➢ Initialization
 ➢ Batch Normalization
 ➢ Dropout

• Convolutional Neural Networks
 ➢ Neural Networks for Computer Vision
 ➢ Convolutional Layers
 ➢ Pooling Layers

• CNN Architectures
 ➢ LeNet
 ➢ AlexNet
 ➢ VGGNet
 ➢ GoogLeNet
CNN Architectures: LeNet (1998)

- Early convolutional architecture
 - 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

Slide credit: Svetlana Lazebnik
ImageNet Challenge 2012

- **ImageNet**
 - ~14M labeled internet images
 - 20k classes
 - Human labels via Amazon Mechanical Turk

- **Challenge (ILSVRC)**
 - 1.2 million training images
 - 1000 classes
 - Goal: Predict ground-truth class within top-5 responses
 - Currently one of the top benchmarks in Computer Vision

[Deng et al., CVPR’09]
CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10^6 images instead of 10^3)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - 16.4% error (top-5) vs. 26.2% for the next best approach
 - A revolution in Computer Vision
 - Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13
AlexNet Results

AlexNet Results

Test image

Retrieved images

CNN Architectures: VGGNet (2015)

- **Main ideas**
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components

ConvNet Configuration

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>A-LRN</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layers</td>
<td>11 weight layers</td>
<td>11 weight layers</td>
<td>13 weight layers</td>
<td>16 weight layers</td>
<td>16 weight layers</td>
<td>19 weight layers</td>
</tr>
<tr>
<td>Input</td>
<td>(224 x 224 RGB image)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv3-64</td>
<td>conv3-64</td>
<td>LRN</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
<td>conv3-64</td>
</tr>
<tr>
<td>maxpool</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
<td>conv3-128</td>
</tr>
<tr>
<td>maxpool</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
<td>conv3-256</td>
</tr>
<tr>
<td>maxpool</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>maxpool</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
<td>conv3-512</td>
</tr>
<tr>
<td>maxpool</td>
<td>FC-4096</td>
<td>FC-4096</td>
<td>FC-1000</td>
<td>soft-max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Mainly used

Image source: Simonyan & Zisserman
Comparison to AlexNet

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

Image source: Hirokatsu Kataoka
CNN Architectures: GoogLeNet (2014)

Main ideas

- “Inception” module as modular component
- Learns filters at several scales within each module

GoogLeNet Visualization
Results on ILSVRC

<table>
<thead>
<tr>
<th>Method</th>
<th>top-1 val. error (%)</th>
<th>top-5 val. error (%)</th>
<th>top-5 test error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG (2 nets, multi-crop & dense eval.)</td>
<td>23.7</td>
<td>6.8</td>
<td>6.8</td>
</tr>
<tr>
<td>VGG (1 net, multi-crop & dense eval.)</td>
<td>24.4</td>
<td>7.1</td>
<td>7.0</td>
</tr>
<tr>
<td>VGG (ILSVRC submission, 7 nets, dense eval.)</td>
<td>24.7</td>
<td>7.5</td>
<td>7.3</td>
</tr>
<tr>
<td>GoogLeNet (Szegedy et al., 2014) (1 net)</td>
<td>-</td>
<td>-</td>
<td>7.9</td>
</tr>
<tr>
<td>GoogLeNet (Szegedy et al., 2014) (7 nets)</td>
<td>-</td>
<td>-</td>
<td>6.7</td>
</tr>
<tr>
<td>MSRA (He et al., 2014) (11 nets)</td>
<td>-</td>
<td>-</td>
<td>8.1</td>
</tr>
<tr>
<td>MSRA (He et al., 2014) (1 net)</td>
<td>27.9</td>
<td>9.1</td>
<td>9.1</td>
</tr>
<tr>
<td>Clarifai (Russakovsky et al., 2014) (multiple nets)</td>
<td>-</td>
<td>-</td>
<td>11.7</td>
</tr>
<tr>
<td>Clarifai (Russakovsky et al., 2014) (1 net)</td>
<td>-</td>
<td>-</td>
<td>12.5</td>
</tr>
<tr>
<td>Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)</td>
<td>36.0</td>
<td>14.7</td>
<td>14.8</td>
</tr>
<tr>
<td>Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)</td>
<td>37.5</td>
<td>16.0</td>
<td>16.1</td>
</tr>
<tr>
<td>OverFeat (Sermanet et al., 2014) (7 nets)</td>
<td>34.0</td>
<td>13.2</td>
<td>13.6</td>
</tr>
<tr>
<td>OverFeat (Sermanet et al., 2014) (1 net)</td>
<td>35.7</td>
<td>14.2</td>
<td>-</td>
</tr>
<tr>
<td>Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)</td>
<td>38.1</td>
<td>16.4</td>
<td>16.4</td>
</tr>
<tr>
<td>Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)</td>
<td>40.7</td>
<td>18.2</td>
<td>-</td>
</tr>
</tbody>
</table>
References and Further Reading

• LeNet

• AlexNet

• VGGNet

• GoogLeNet