This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations
- Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, RNNs, RBMs, etc.

Topics of This Lecture

- Tricks of the Trade
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

Recap: Data Augmentation

- Effect
 - Much larger training set
 - Robustness against expected variations
- During testing
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several ColorPCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Recap: Normalizing the Inputs

- Convergence is fastest if
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

- Advisable normalization steps (for MLPs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

Recap: Choosing the Right Learning Rate

- Convergence of Gradient Descent
 - Simple 1D example
 \[W^{(t+1)} = W^{(t)} - \eta \frac{dE(W)}{dW} \]
 - What is the optimal learning rate \(\eta_{opt} \)?
 - If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian
 \[\eta_{opt} = \left(\frac{d^2E(W^{(t)})}{dW^2} \right)^{-1} \]
 - Advanced optimization techniques try to approximate the Hessian by a simplified form.
 - If we exceed the optimal learning rate, bad things happen!
Recap: Advanced Optimization Techniques

- **Momentum**
 - Instead of using the gradient to change the position of the weight “particle”, use it to change the velocity.
 - Effect: dampen oscillations in directions of high curvature
 - Nesterov-Momentum: Small variation in the implementation
- **RMS-Prop**
 - Separate learning rate for each weight: Divide the gradient by a running average of its recent magnitude.
- **AdaGrad**
- **AdaDelta**
- **Adam**

Some more recent techniques, work better for some problems. Try them.

Trick: Patience

- Saddle points dominate in high-dimensional spaces!
- Learning often doesn’t get stuck, you just may have to wait...

Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.
- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.
- **Be careful: Do not turn down the learning rate too soon!**
 - Further progress will be much slower after that.

Topics of This Lecture

- **Tricks of the Trade**
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout
- **Convolutional Neural Networks**
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers
- **CNN Architectures**
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

Batch Normalization [Ioffe & Szegedy ’14]

- **Motivation**
 - Optimization works best if all inputs of a layer are normalized.
- **Idea**
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - i.e., perform transformations on all activations and undo those transformations when backpropagating gradients
- **Effect**
 - Much improved convergence

Dropout [Srivastava, Hinton ’12]

- **Idea**
 - Randomly switch off units during training.
 - Change network architecture for each data point, effectively training many different variants of the network.
 - When applying the trained network, multiply activations with the probability that the unit was set to zero.
 - Greatly improved performance
Topics of This Lecture

- Tricks of the Trade
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout
- Convolutional Neural Networks
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

Neural Networks for Computer Vision

- How should we approach vision problems?

 Face Y/N?

 - Architectural considerations
 - Input is 2D ⇒ 2D layers of units
 - No pre-segmentation ⇒ Need robustness to misalignments
 - Vision is hierarchical ⇒ Hierarchical multi-layered structure
 - Vision is difficult ⇒ Network should be deep

Why Hierarchical Multi-Layered Models?

- Motivation 1: Visual scenes are hierarchically organized

 ![Object](image1)
 ![Object parts](image2)
 ![Primitive features](image3)
 ![Input image](image4)
 ![Face](image5)
 ![Eyes, nose, ...](image6)
 ![Oriented edges](image7)

- Motivation 2: Biological vision is hierarchical, too

 ![Object](image8)
 ![Object parts](image9)
 ![Primitive features](image10)
 ![Input image](image11)
 ![Face](image12)
 ![Eyes, nose, ...](image13)
 ![Oriented edges](image14)

Inspiration: Neuron Cells

 - Visual cortex consists of a hierarchy of simple, complex, and hyper-complex cells

Hubel/Wiesel Architecture

- Hubel & Wiesel topographical mapping
 - hyper-complex cells
 - complex cells
 - simple cells
- featural hierarchy
 - high level
 - mid level
 - low level

Slide credits: Svetlana Lazebnik, Rob Fergus
Why Hierarchical Multi-Layered Models?

- **Motivation 3:** Shallow architectures are inefficient at representing complex functions

![Diagram of an MLP with 1 hidden layer that can implement any function (universal approximator)]

However, if the function is deep, a very large hidden layer may be required.

What’s Wrong With Standard Neural Networks?

- **Complexity analysis**
 - How many parameters does this network have?
 \[|\theta| = 3D^2 + D \]
 - For a small 32 x 32 image
 \[|\theta| = 3 \cdot 32^4 + 32^2 \approx 3 \cdot 10^6 \]

- **Consequences**
 - Hard to train
 - Need to initialize carefully

 Convolutional nets reduce the number of parameters!

Convolutional Neural Networks (CNN, ConvNet)

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Convolutional Networks: Intuition

- **Locally connected net**
 - E.g. 1000 x 1000 image
 - 1M hidden units
 - 10 x 10 receptive fields
 \[\Rightarrow 100M \text{ parameters!} \]

- **Ideas to improve this**
 - Spatial correlation is local
 - Want translation invariance

Convolutional Networks: Intuition

- **Convolutional net**
 - Share the same parameters across different locations
 - Convolutions with learned kernels
Convolutional Networks: Intuition

- **Convolutional net**
 - Share the same parameters across different locations
 - Convolutions with learned kernels

- **Learn multiple filters**
 - E.g. 1000x1000 image, 100 filters
 - 10x10 filter size
 - \(\Rightarrow 10k \) parameters

- **Result: Response map**
 - size: 1000x1000x100
 - Only memory, not params!

Convolution Layers

- **Example image:** 32x32x3 volume

Before: Full connectivity
- 32x32x3 weights

Now: Local connectivity
- One neuron connects to, e.g., 5x5x5 region.
- \(\Rightarrow \) Only 5x5x3 shared weights.

Convolution Layers

- **Naming convention:**
 - \(7 \times 7 \) input assume \(3 \times 3 \) connectivity
 - **stride 1**

- **Replicate this column of hidden neurons across space, with some stride.**

Important Conceptual Shift

- **Before**
 - input layer
 - hidden layer

- **Now:**
 - \(\rightarrow \) output layer
Convolution Layers

- Replicate this column of hidden neurons across space, with some **stride**.

Example:
7 x 7 input
assume 3 x 3 connectivity
stride 1

Example:
7 x 7 input
assume 3 x 3 connectivity
stride 1

Example:
7 x 7 input
assume 3 x 3 connectivity
stride 1
⇒ 5 x 5 output

What about stride 2?

What about stride 2?

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe
Convolution Layers

- Replicate this column of hidden neurons across space, with some stride.

Example:
7x7 input, assume 3x3 connectivity, stride 1
\Rightarrow 5x5 output

What about stride 2?
\Rightarrow 3x3 output

- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.

Activation Maps of Convolutional Filters

- Each activation map is a depth slice through the output volume.

Effect of Multiple Convolution Layers

- Let’s assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

Solution:
- By pooling (e.g., max or avg) filter responses at different spatial locations, we gain robustness to the exact spatial location of features.
Max Pooling

- **Effect:**
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations

- **Note**
 - Pooling happens independently across each slice, preserving the number of slices.

CNNs: Implication for Back-Propagation

- **Convolutional layers**
 - Filter weights are shared between locations
 - Gradients are added for each filter location.

Topics of This Lecture

- **Tricks of the Trade**
 - Recap
 - Initialization
 - Batch Normalization
 - Dropout

- **Convolutional Neural Networks**
 - Neural Networks for Computer Vision
 - Convolutional Layers
 - Pooling Layers

- **CNN Architectures**
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet

CNN Architectures: LeNet (1998)

- Early convolutional architecture
 - 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

ImageNet Challenge 2012

- **ImageNet**
 - ~14M labeled internet images
 - 20k classes
 - Human labels via Amazon Mechanical Turk

- **Challenge (ILSVRC)**
 - 1.2 million training images
 - 1000 classes
 - Goal: Predict ground-truth class within top-5 responses
 - Currently one of the top benchmarks in Computer Vision

[Deng et al., CVPR'09]
CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10^6 images instead of 10^3)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

AlexNet Results

ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - 16.4% error (top-5) vs. 26.2% for the next best approach
 - A revolution in Computer Vision
 - Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13

CNN Architectures: VGGNet (2015)

- Main ideas
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components

VGGNet Results

Comparison to AlexNet

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015
CNN Architectures: GoogLeNet (2014)

- Main ideas
 - "Inception" module as modular component
 - Learns filters at several scales within each module

References and Further Reading

- LeNet

- AlexNet

- VGGNet
 - K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

- GoogLeNet