This Lecture: Advanced Machine Learning

- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes
- Learning with Latent Variables
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations
- Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, RNNs, RBMs, etc.

B. Leibe

Recap: Learning with Hidden Units

- How can we train multi-layer networks efficiently?
 - Need an efficient way of adapting all weights, not just the last layer.

- Idea: Gradient Descent
 - Set up an error function
 \[E(W) = \sum_n L(t_n, y(x_n; W)) + \lambda \Omega(W) \]
 - with a loss \(L(\cdot) \) and a regularizer \(\Omega(\cdot) \).
 - E.g., \(L(t, y(x; W)) = \sum_n (y(x; W) - t_n)^2 \) L2 loss
 \[\Omega(W) = |W|^2 \]
 \[\text{L2 regularizer ("weight decay")} \]

- Update each weight \(W_{ij}^{(k)} \) in the direction of the gradient

Recap: Backpropagation Algorithm

- Core steps
 1. Convert the discrepancy between each output and its target value into an error derivative.
 \[E = \frac{1}{2} \sum_{j \in \text{output}} (t_j - y_j)^2 \]
 \[\frac{\partial E}{\partial y_j} = -(t_j - y_j) \]
 2. Compute error derivatives in each hidden layer from error derivatives in the layer above.

- Efficient propagation scheme
 - \(y_j \) is already known from forward pass! (Dynamic Programming)
 \[\text{Propagate back the gradient from layer } j \text{ and multiply with } y_j \]

Gradient Descent

- Two main steps
 1. Computing the gradients for each weight last lecture
 2. Adjusting the weights in the direction of the gradient today
Recap: MLP Backpropagation Algorithm

- **Forward Pass**

 \[
 y^{(0)} = x \\
 \text{for } k = 1, \ldots, l \text{ do} \\
 z^{(k)} = W^{(k)} y^{(k-1)} \\
 y^{(k)} = g_k(z^{(k)}) \\
 \text{endfor} \\
 y = y^{(l)} \\
 E = L(t, y) + \lambda \Omega(W)
 \]

- **Backward Pass**

 \[
 h_i = \frac{\partial E}{\partial y_i} = \frac{\partial L}{\partial y_i} L(t, y) + \lambda \frac{\partial \Omega}{\partial y_i} \\
 \text{for } k = l, l-1, \ldots, 1 \text{ do} \\
 h_i = \frac{\partial E}{\partial y_i} = h_i \odot g'(z^{(k)}) \\
 \frac{\partial E}{\partial W^{(k)}} = h_i y^{(k-1)} + \lambda \frac{\partial \Omega}{\partial W^{(k)}} \\
 h_i = \frac{\partial E}{\partial y_i} = W^{(k)^\top} h_i \\
 \text{endfor}
 \]

- **Notes**

 - For efficiency, an entire batch of data \(X\) is processed at once.
 - \(\bar{\circ}\) denotes the element-wise product.

Recap: Computational Graphs

- **Forward Mode Differentiation**

 Apply operator \(\frac{\partial}{\partial X}\) to every node.

- **Reverse Mode Differentiation**

 Apply operator \(\frac{\partial}{\partial O}\) to every node.

 - Forward differentiation needs one pass per node. Reverse-mode differentiation can compute all derivatives in one single pass.
 - Speed-up in \(O(#\text{inputs})\) compared to forward differentiation!

Recap: Automatic Differentiation

- **Approach for obtaining the gradients**

 Convert the network into a computational graph.

 - Each new layer/module just needs to specify how it affects the forward and backward passes.
 - Apply reverse-mode differentiation.
 - Very general algorithm, used in today’s Deep Learning packages.

Topics of This Lecture

- **Gradient Descent Revisited**

- **Data (Pre-)processing**

 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization

- **Convergence of Gradient Descent**

 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers

- **Other Tricks**

 - Batch Normalization
 - Dropout

- **Gradient Descent**

 - Two main steps

 1. Computing the gradients for each weight
 2. Adjusting the weights in the direction of the gradient

 - Recall: Basic update equation

 \[
 W^{(r+1)}_{kj} = W^{(r)}_{kj} - \eta \frac{\partial E(W)}{\partial W_{kj}} \bigg|_{w^{(r)}}
 \]

 - Main questions

 - On what data do we want to apply this?
 - How should we choose the step size \(\eta\) (the learning rate)?
 - In which direction should we update the weights?
Stochastic vs. Batch Learning

- **Batch learning**
 - Process the full dataset at once to compute the gradient.
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]

- **Stochastic learning**
 - Choose a single example from the training set.
 - Compute the gradient only based on this example
 - This estimate will generally be noisy, which has some advantages.
 \[w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_{\text{w}}(w)}{\partial w_{kj}} \]

Minibatches

- **Idea**
 - Process only a small batch of training examples together
 - Start with a small batch size & increase it as training proceeds.
- **Advantages**
 - Gradients will more stable than for stochastic gradient descent, but still faster to compute than with batch learning.
 - Take advantage of redundancies in the training set.
 - Matrix operations are more efficient than vector operations.
- **Caveat**
 - Error function should be normalized by the minibatch size, s.t.
 we can keep the same learning rate between minibatches
 \[E(W) = \frac{1}{N} \sum_{n} L(t_n, y(x_n; W)) + \lambda \frac{1}{N} \| W \| \]

Shuffling the Examples

- **Ideas**
 - Networks learn fastest from the most unexpected sample.
 - E.g. a sample from a different class than the previous one.
 - A large relative error indicates that an input has not been learned by the network yet, so it contains a lot of information.
 - It can make sense to present such inputs more frequently.
 - But: be careful, this can be disastrous when the data are outliers.
- **Practical advice**
 - When working with stochastic gradient descent or minibatches, make use of shuffling.

Data Augmentation

- **Idea**
 - Augment original data with synthetic variations to reduce overfitting.
- **Example augmentations for images**
 - Cropping
 - Zooming
 - Flipping
 - Color PCA

- **Effect**
 - Much larger training set
 - Robustness against expected variations
- **During testing**
 - When cropping was used during training, need to again apply crops to get same image size.
 - Beneficial to also apply flipping during test.
 - Applying several Color PCA variations can bring another ~1% improvement, but at a significantly increased runtime.

Augmented training data (from one original image)
General Guideline

Apply All
THE AUGMENTATIONS

Normalization

- Motivation
 - Consider the Gradient Descent update steps
 \[w_{kj}^{(t+1)} = w_{kj}^{(t)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \]
 - From backpropagation, we know that
 \[\frac{\partial E}{\partial w_{ij}} = \cdot \frac{\partial E}{\partial \eta_{ij}} \cdot \frac{\partial E}{\partial \eta_{ij}} = y_i \cdot \eta_{ij} \]
 - When all of the components of the input vector \(y_i \) are positive, all of the updates of weights that feed into a node will be of the same sign.
 - \(\Rightarrow \) Weights can only all increase or decrease together.
 - \(\Rightarrow \) Slow convergence

Normalization

• Motivation
 - The mean of each input variable over the training set is zero.
 - The inputs are scaled such that all have the same covariance.
 - Input variables are uncorrelated if possible.

• Advisable normalization steps (for MLPs)
 - Normalize all inputs that an input unit sees to zero-mean, unit covariance.
 - If possible, try to decorrelate them using PCA (also known as Karhunen-Loève expansion).

Choosing the Right Sigmoid

• Normalization is also important for intermediate layers
 - Symmetric sigmoids, such as tanh, often converge faster than the standard logistic sigmoid.
 - Recommended sigmoid:
 \[f(x) = 1.7159 \tanh \left(\frac{x}{4} \right) \]
 - \(\Rightarrow \) When used with transformed inputs, the variance of the outputs will be close to 1.

Initializing the Weights

• Motivation
 - The starting values of the weights can have a significant effect on the training process.
 - Weights should be chosen randomly, but in a way that the sigmoid is primarily activated in its linear region.

• Guideline
 - Assuming that
 - The training set has been normalized
 - The sigmoid \(f(x) = 1.7159 \tanh \left(\frac{x}{4} \right) \) is used
 - The initial weights should be randomly drawn from a distribution (e.g., uniform or Normal) with mean zero and standard deviation
 \[\sigma_w = \frac{\eta}{\sqrt{m-1/2}} \]
 where \(m \) is the fan-in (number of connections into the node).

Topics of This Lecture

- Gradient Descent
- Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization
- Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers
- Other Tricks
 - Batch Normalization
 - Dropout
Choosing the Right Learning Rate

- Analyzing the convergence of Gradient Descent
 - Consider a simple 1D example first
 \[W(t+1) = W(t) - \eta \frac{dE(W)}{dW} \]
 - What is the optimal learning rate \(\eta_{\text{opt}} \)?
 - If \(E \) is quadratic, the optimal learning rate is given by the inverse of the Hessian
 \[\eta_{\text{opt}} = \left(\frac{d^2E(W(t))}{dW^2} \right)^{-1} \]
 - What happens if we exceed this learning rate?

Learning Rate vs. Training Error

Batch vs. Stochastic Learning

- Batch Learning
 - Simplest case: steepest decent on the error surface.
 - Updates perpendicular to contour lines
- Stochastic Learning
 - Simplest case: zig-zag around the direction of steepest descent.
 - Updates perpendicular to constraints from training examples.

Why Learning Can Be Slow

- If the inputs are correlated
 - The ellipse will be very elongated.
 - The direction of steepest descent is almost perpendicular to the direction towards the minimum!

This is just the opposite of what we want!

The Momentum Method

- Idea
 - Instead of using the gradient to change the position of the weight “particle”, use it to change the velocity.
- Intuition
 - Example: Ball rolling on the error surface
 - It starts off by following the error surface, but once it has accumulated momentum, it no longer does steepest decent.
- Effect
 - Dampen oscillations in directions of high curvature by combining gradients with opposite signs.
 - Build up speed in directions with a gentle but consistent gradient.
The Momentum Method: Implementation

- Change in the update equations
 - Effect of the gradient: increment the previous velocity, subject to a decay by $\alpha < 1$.
 \[
 v(t) = \alpha v(t-1) - \frac{\partial E}{\partial w}(t)
 \]
 - Set the weight change to the current velocity
 \[
 \Delta w = v(t) = \alpha v(t-1) - \frac{\partial E}{\partial w}(t) = \alpha \Delta w(t-1) - \frac{\partial E}{\partial w}(t)
 \]

The Momentum Method: Behavior

- Behavior
 - If the error surface is a tilted plane, the ball reaches a terminal velocity
 \[
 v(\infty) = \frac{1}{1-\alpha} \left(-\frac{\partial E}{\partial w} \right)
 \]
 - If the momentum α is close to 1, this is much faster than simple gradient descent.
 - At the beginning of learning, there may be very large gradients.
 - Use a small momentum initially (e.g., $\alpha = 0.5$).
 - Once the large gradients have disappeared and the weights are stuck in a ravine, the momentum can be smoothly raised to its final value (e.g., $\alpha = 0.90$ or even $\alpha = 0.99$).

> This allows us to learn at a rate that would cause divergent oscillations without the momentum.

Improvement: Nesterov-Momentum

- Standard Momentum method
 - First compute the gradient at the current location
 - Then jump in the direction of the updated accumulated gradient
- Improvement [Sutskever 2012]
 - (Inspiration: Nesterov method for optimizing convex functions.)
 - First jump in the direction of the previous accumulated gradient
 - Then measure the gradient where you end up and make a correction.

<table>
<thead>
<tr>
<th>Standard Momentum</th>
<th>Jump</th>
<th>Correction</th>
<th>Accumulated gradient</th>
</tr>
</thead>
</table>

> Intuition: It’s better to correct a mistake after you’ve made it.

Separate, Adaptive Learning Rates

- Problem
 - In multilayer nets, the appropriate learning rates can vary widely between weights.
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - Gradients can get very small in the early layers of deep nets.
 - The fan-in of a unit determines the size of the "overshoot" effect when changing multiple weights simultaneously to correct the same error.
 - The fan-in often varies widely between layers

> Gradients can get very small in the early layers of deep nets.

- Solution
 - Use a global learning rate, multiplied by a local gain per weight (determined empirically)

Adaptive Learning Rates

- One possible strategy
 - Start with a local gain of 1 for every weight
 - Increase the local gain if the gradient for the weight does not change the sign.
 - Use small additive increases and multiplicative decreases (for mini-batch)
 \[
 \Delta w_{ij} = -\varepsilon g_{ij} \frac{\partial E}{\partial w_{ij}}
 \]
 - if $\left(\frac{\partial E}{\partial w_{ij}}(t) \frac{\partial E}{\partial w_{ij}}(t-1) \right) > 0$
 - then $g_{ij}(t) = g_{ij}(t-1) + 0.05$
 - else $g_{ij}(t) = g_{ij}(t-1) + 0.95$

> Big gains will decay rapidly once oscillation starts.
Better Adaptation: RMSProp

- **Motivation**
 - The magnitude of the gradient can be very different for different weights and can change during learning.
 - This makes it hard to choose a single global learning rate.
 - For batch learning, we can deal with this by only using the sign of the gradient, but we need to generalize this for minibatches.

- **Idea of RMSProp**
 - Divide the gradient by a running average of its recent magnitude
 \[
 \text{MeanSq}(w_{ij}, t) = 0.9 \times \text{MeanSq}(w_{ij}, t-1) + 0.1 \left(\frac{\partial E}{\partial w_{ij}}(t) \right)^2
 \]
 - Divide the gradient by \(\sqrt{\text{MeanSq}(w_{ij}, t)}\).

Other Optimizers (Lucas)

- AdaGrad [Duchi '10]
- AdaDelta [Zeiler '12]
- Adam [Ba & Kingma '14]

- **Notes**
 - All of those methods have the goal to make the optimization less sensitive to parameter settings.
 - Adam is currently becoming the quasi-standard

Behavior in a Long Valley

Behavior around a Saddle Point

Visualization of Convergence Behavior

Trick: Patience

- Saddle points dominate in high-dimensional spaces!
 \[\Rightarrow \text{Learning often doesn’t get stuck, you just may have to wait...} \]
Reducing the Learning Rate

- Final improvement step after convergence is reached
 - Reduce learning rate by a factor of 10.
 - Continue training for a few epochs.
 - Do this 1-3 times, then stop training.

- Effect
 - Turning down the learning rate will reduce the random fluctuations in the error due to different gradients on different minibatches.
 - *Be careful: Do not turn down the learning rate too soon!*
 - Further progress will be much slower after that.

Topics of This Lecture

- Gradient Descent
- Data (Pre-)processing
 - Stochastic Gradient Descent & Minibatches
 - Data Augmentation
 - Normalization
 - Initialization
- Convergence of Gradient Descent
 - Choosing Learning Rates
 - Momentum & Nesterov Momentum
 - RMS Prop
 - Other Optimizers
- Other Tricks
 - Batch Normalization
 - Dropout

Batch Normalization [Ioffe & Szegedy ‘14]

- Motivation
 - Optimization works best if all inputs of a layer are normalized.

- Idea
 - Introduce intermediate layer that centers the activations of the previous layer per minibatch.
 - I.e., perform transformations on all activations and undo those transformations when backpropagating gradients

- Effect
 - Much improved convergence

Dropout [Srivastava, Hinton ‘12]

- Idea
 - Randomly switch off units during training.
 - Change network architecture for each data point, effectively training many different variants of the network.
 - When applying the trained network, multiply activations with the probability that the unit was set to zero.
 → Greatly improved performance

References and Further Reading

- More information on many practical tricks can be found in Chapter 1 of the book

G. Montavon, G. B. Orr, K-R Mueller (Eds.)
Neural Networks: Tricks of the Trade

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller