Recap: Binary Variables

- Bernoulli distribution
 - Probability distribution over \(x \in \{0, 1\} \):
 \[
 \text{Bern}(x | \mu) = \mu^x (1 - \mu)^{1-x}
 \]
 - \(\mathbb{E}[x] = \mu \)
 - \(\text{var}[x] = \mu (1 - \mu) \)

- Binomial distribution
 - Generalization for \(m \) outcomes out of \(N \) trials:
 \[
 \text{Bin}(m | N, \mu) = \binom{N}{m} \mu^m (1 - \mu)^{N-m}
 \]
 - \(\mathbb{E}[m] = N \mu \)
 - \(\text{var}[m] = N \mu (1 - \mu) \)

Recap: The Beta Distribution

- Beta distribution
 - Distribution over \(\mu \in [0, 1] \):
 \[
 \text{Beta}(\mu | a, b) = \frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}
 \]
 - \(\mathbb{E}[\mu] = \frac{a}{a+b} \)
 - \(\text{var}[\mu] = \frac{ab}{(a+b)^2 (a+b+1)} \)

- Properties
 - The Beta distribution generalizes the Binomial to arbitrary values of \(a \) and \(b \), while keeping the same functional form.
 - It is therefore a conjugate prior for the Bernoulli and Binomial.
Recap: The Dirichlet Distribution

- **Dirichlet Distribution**
 - Multivariate generalization of the Beta distribution
 \[
 \text{Dir}(\mathbf{\alpha}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \alpha_k^{\alpha_k - 1}
 \]
 - \(\alpha = \sum_{i=1}^{K} \alpha_k\)
 - \(E[\mu_k] = \frac{\alpha_k}{\sum_{k=1}^{K} \alpha_k}\)
 - \(\text{var}[\mu_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}\)
 - \(\text{cov}[\mu_j, \mu_k] = -\frac{\alpha_j \alpha_k}{\alpha_0^2(\alpha_0 + 1)}\)

- **Properties**
 - Conjugate prior for the Multinomial.
 - The Dirichlet distribution over \(K\) variables is confined to a \(K-1\) dimensional simplex.

Recap: The Gaussian Distribution

- **One-dimensional case**
 - Mean \(\mu\)
 - Variance \(\sigma^2\)
 \[\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\}\]

- **Multi-dimensional case**
 - Mean \(\mu\)
 - Covariance \(\Sigma\)
 \[\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}\Sigma^{1/2}} \exp\left\{ -\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right\}\]

Recap: Bayes’ Theorem for Gaussian Variables

- **Marginal and Conditional Gaussians**
 - Suppose we are given a Gaussian prior \(p(x)\) and a Gaussian conditional distribution \(p(y|x)\) (a linear Gaussian model)
 \[p(x) = \mathcal{N}(x|\mu, \Lambda^{-1})\]
 \[p(y|x) = \mathcal{N}(y|Ax + b, L^{-1})\]
 - From this, we can compute
 \[p(y) = \mathcal{N}(y|A\mu + b, L^{-1} + AA^{-1}A^T)\]
 \[p(x|y) = \mathcal{N}(x|\Sigma(\Lambda + \Lambda^T \Sigma^{-1} A^T)\Sigma^{-1}(y - b) + \Lambda \mu), \Sigma)\]
 where
 \[\Sigma = (\Lambda + \Lambda^T \Sigma^{-1} A^T)\Sigma^{-1}\]
 \(\Rightarrow\) Closed-form solution for (Gaussian) marginal and posterior.

Maximum Likelihood for the Gaussian

- **Maximum Likelihood**
 - Given i.i.d. data \(X = (x_1, \ldots, x_N)^T\), the log likelihood function is given by
 \[\log p(X|\mu, \Sigma) = -\frac{N}{2} \log(2\pi) - \frac{N}{2} \log |\Sigma|\]
 - \(-\frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^T \Sigma^{-1} (x_n - \mu)\)
 - **Sufficient statistics**
 - The likelihood depends on the data set only through
 \[\sum_{n=1}^{N} x_n, \sum_{n=1}^{N} x_n x_n^T\]
 - Those are the sufficient statistics for the Gaussian distribution.

ML for the Gaussian

- **Setting the derivative to zero**
 \[\frac{\partial}{\partial \mu} \ln p(X|\mu, \Sigma) = \sum_{n=1}^{N} \Sigma^{-1} (x_n - \mu) = 0\]
 - Solve to obtain
 \[\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n\]
 - And similarly, but a bit more involved
 \[\Sigma_{ML} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T\]

- **Comparison with true results**
 - Under the true distribution, we obtain
 \[E[\mu_{ML}] = \mu, E[\Sigma_{ML}] = \frac{N-1}{N} \Sigma\]
 - The ML estimate for the covariance is biased and underestimates the true covariance.
 - Therefore define the following unbiased estimator
 \[\hat{\Sigma} = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \mu_{ML})(x_n - \mu_{ML})^T\].
Bayesian Inference for the Gaussian

- Let’s begin with a simple example.
 - Consider a single Gaussian random variable x.
 - Assume σ^2 is known and the task is to infer the mean μ.
 - Given i.i.d. data $X = (x_1, \ldots, x_N)^T$, the likelihood function for μ is given by
 $$p(X|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$
 - The likelihood function has a Gaussian shape as a function of μ.
 - The conjugate prior for this case is again a Gaussian.
 $$p(\mu) = N(\mu|\mu_0, \sigma_0^2)$$

Bayesian Inference for the Gaussian

- Combined with a Gaussian prior over μ
 $$p(\mu) = N(\mu|\mu_0, \sigma_0^2)$$
 - This results in the posterior
 $$p(\mu|X) \propto p(\mu)p(X|\mu)$$
 - Completing the square over μ, we can derive that
 $$p(\mu|X) = N(\mu|\mu_N, \sigma_N^2)$$
 where
 $$\mu_N = \frac{\sigma_0^2 \mu_0 + N\bar{x}}{\sigma_0^2 + N\sigma^2}$$
 $$\sigma_N^2 = \frac{1}{\sigma_0^2 + N\sigma^2}$$

Visualization of the Results

- Bayes estimate:
 $$\mu_N = \frac{\sigma_0^2 \mu_0 + N\bar{x}}{\sigma_0^2 + N\sigma^2}$$
 $$\sigma_N^2 = \frac{1}{\sigma_0^2 + N\sigma^2}$$

 - Behavior for large N
 $$\mu_N \rightarrow \mu_0 \quad \sigma_N^2 \rightarrow 0$$
 - $N = 0$
 - $N = 10$
 - $N = 20$
 - $N = 100$

The Gamma Distribution

- Gamma distribution
 $$\text{Gam}(\lambda|a, b) = \frac{1}{\Gamma(a)} b^a \lambda^{a-1} \exp(-b\lambda)$$
- Properties
 - Finite integral if $a>0$ and the distribution itself is finite if $a\geq 1$.
 - Moments
 $$\mathbb{E}[\lambda] = \frac{a}{b} \quad \text{var}[\lambda] = \frac{a}{b^2}$$
 - Visualization

Bayesian Inference for the Gaussian

- More complex case
 - Now assume μ is known and the precision λ shall be inferred.
 - The likelihood function for $\lambda = 1/\sigma^2$ is given by
 $$p(X|\lambda) = \prod_{n=1}^{N} N(x_n|\mu, \lambda^{-1}) \propto \lambda^{N/2} \exp\left\{-\frac{\lambda}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$
 - This has the shape of a Gamma function of λ.

Bayesian Inference for the Gaussian

- Bayesian estimation
 - Combine a Gamma prior $\text{Gam}(\lambda|a_0, b_0)$ with the likelihood function to obtain
 $$p(\lambda|X) \propto \lambda^{a_0 - 1} \lambda^{N/2} \exp\left\{-b_0 - \frac{\lambda}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}$$
 - We recognize this again as a Gamma function with
 $$a_N = a_0 + N$$
 $$b_N = b_0 + \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^2$$
Bayesian Inference for the Gaussian

- Even more complex case
 - Assume that both μ and λ are unknown
 - The joint likelihood function is given by
 $$p(X|\mu, \lambda) = \prod_{n=1}^{N} \frac{1}{2\pi} \left(\frac{\lambda}{2} \right)^{1/2} \exp \left\{ -\frac{\lambda}{2}(x_n - \mu)^2 \right\}$$
 - $$\propto \left[\frac{\lambda^{1/2}}{2\pi} \exp \left\{ -\frac{\lambda \mu^2}{2} \right\} \right]^N \exp \left\{ \frac{\lambda}{2} \sum_{n=1}^{N} x_n - \frac{\lambda}{2} \sum_{n=1}^{N} \sigma_n^2 \right\}.$$

 \Rightarrow Need a prior with the same functional dependence on μ and λ.

Bayesian Inference for the Gaussian

- Multivariate conjugate priors
 - μ unknown, Λ known: $p(\mu)$ Gaussian.
 - Λ unknown, μ known: $p(\Lambda)$ Wishart,
 $$W(\Lambda|W, \nu) = B(\Lambda^{(\nu-D)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(W^{-1} \Lambda) \right\}).$$
 - Λ and μ unknown: $p(\mu, \Lambda)$ Gaussian-Wishart,
 $$p(\mu, \Lambda|\mu_0, \beta, W, \nu) = \mathcal{N}(\mu|\mu_0, (\beta\Lambda)^{-1})W(\Lambda|W, \nu).$$

Student’s t-Distribution

- Gaussian estimation
 - The conjugate prior for the precision of a Gaussian is a Gamma distribution.
 - Suppose we have a univariate Gaussian $\mathcal{N}(x|\mu, \tau^{-1})$ together with a Gamma prior $\text{Gam}(\tau|a,b)$.
 - By integrating out the precision, obtain the marginal distribution
 $$p(x|\mu, a, b) = \int_0^\infty \mathcal{N}(x|\mu, \tau^{-1}) \text{Gam}(\tau|a,b) d\tau$$
 $$= \int_0^\infty \mathcal{N} \left(x|\mu, (\eta \lambda)^{-1} \right) \text{Gam}(\eta|\nu/2, \nu/2) d\eta$$
 - This corresponds to an infinite mixture of Gaussians having the same mean, but different precision.

The Gaussian-Gamma Distribution

- Gaussian-Gamma distribution
 $$p(\mu, \lambda) = \mathcal{N}(\mu|\mu_0, (\beta\lambda)^{-1})\text{Gam}(\lambda|a, b)$$
 $$\propto \exp \left\{ -\frac{\beta\lambda}{2}(\mu - \mu_0)^2 \right\} \lambda^{\nu-1} \exp \left\{ -b\lambda \right\}$$
 - Quadratic in μ.
 - Linear in λ.

Recap: Bayesian Inference for the Gaussian

- Multivariate conjugate priors
 - μ unknown, Λ known: $p(\mu)$ Gaussian.
 - Λ unknown, μ known: $p(\Lambda)$ Wishart,
 $$W(\Lambda|W, \nu) = B(\Lambda^{(\nu-D)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(W^{-1} \Lambda) \right\}).$$
 - Λ and μ unknown: $p(\mu, \Lambda)$ Gaussian-Wishart,
 $$p(\mu, \Lambda|\mu_0, \beta, W, \nu) = \mathcal{N}(\mu|\mu_0, (\beta\Lambda)^{-1})W(\Lambda|W, \nu).$$

Student’s t-Distribution

- Student’s t-Distribution
 - We reparametrize the infinite mixture of Gaussians to get
 $$St(x|\mu, \lambda, \nu) = \frac{\Gamma((\nu+2)/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\nu} \right)^{1/2} \left[1 + \frac{\lambda(x - \mu)^2}{\nu} \right]^{-(\nu+2)/2}$$
 - Parameters
 - "Precision" $\lambda = a/b$.
 - "Degrees of freedom" $\nu = 2a$.

Student’s t-Distribution

- Student’s t-Distribution
 - We reparametrize the infinite mixture of Gaussians to get
 $$St(x|\mu, \lambda, \nu) = \frac{\Gamma((\nu+2)/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\nu} \right)^{1/2} \left[1 + \frac{\lambda(x - \mu)^2}{\nu} \right]^{-(\nu+2)/2}$$
 - Parameters
 - "Precision" $\lambda = a/b$.
 - "Degrees of freedom" $\nu = 2a$.

- Student’s t-Distribution
 - We reparametrize the infinite mixture of Gaussians to get
 $$St(x|\mu, \lambda, \nu) = \frac{\Gamma((\nu+2)/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\nu} \right)^{1/2} \left[1 + \frac{\lambda(x - \mu)^2}{\nu} \right]^{-(\nu+2)/2}$$
 - Parameters
 - "Precision" $\lambda = a/b$.
 - "Degrees of freedom" $\nu = 2a$.

- Student’s t-Distribution
 - We reparametrize the infinite mixture of Gaussians to get
 $$St(x|\mu, \lambda, \nu) = \frac{\Gamma((\nu+2)/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\nu} \right)^{1/2} \left[1 + \frac{\lambda(x - \mu)^2}{\nu} \right]^{-(\nu+2)/2}$$
 - Parameters
 - "Precision" $\lambda = a/b$.
 - "Degrees of freedom" $\nu = 2a$.

Student's t-Distribution: Visualization

- **Behavior**
 - $\text{St}(x|\mu, \lambda, \nu) \mid \nu = 1 \rightarrow \text{Cauchy } N(x|\mu, \lambda^{-1})$

 ➔ More robust to outliers...

 ➔ Longer-tailed distribution!

- **Robustness to outliers:** Gaussian vs t-distribution.

 ➔ The t-distribution is much less sensitive to outliers, can be used for robust regression.

 ➔ Downside: ML solution for t-distribution requires EM algorithm.

Student's t-Distribution: Multivariate Case

- **Multivariate case in D dimensions**

 $\text{St}(x|\mu, A, \nu) = \int_0^{\infty} N(x|\mu, (nA)^{-1}) \text{Gam}(\nu/2, \nu/2) \, dn$

 $= \frac{\Gamma(D/2 + \nu/2)}{\Gamma(\nu/2)} \left(\frac{1}{\nu/2} \right)^{D/2} \left(1 + \frac{\Delta^2}{\nu} \right)^{-D/2 - \nu/2}$

 where $\Delta^2 = (x - \mu)^T A (x - \mu)$ is the Mahalanobis distance.

- **Properties**
 - $E[x] = \mu$, if $\nu > 1$
 - $\text{cov}[x] = \frac{\nu}{\nu - 2} A^{-1}$, if $\nu > 2$
 - $\text{mode}[x] = \mu$

Topics of This Lecture

- **Approximate Inference**
 - Variational methods
 - Sampling approaches

- **Sampling approaches**
 - Sampling from a distribution
 - Ancestral Sampling
 - Rejection Sampling
 - Importance Sampling

- **Markov Chain Monte Carlo**
 - Markov Chains
 - Metropolis Algorithm
 - Metropolis-Hastings Algorithm
 - Gibbs Sampling

Approximate Inference

- Exact Bayesian inference is often intractable.
 - Often infeasible to evaluate the posterior distribution or to compute expectations w.r.t. the distribution.
 - E.g. because the dimensionality of the latent space is too high.
 - Or because the posterior distribution has a too complex form.
 - Problems with continuous variables
 - Required integrations may not have closed-form solutions.
 - Problems with discrete variables
 - Marginalization involves summing over all possible configurations of the hidden variables.
 - There may be exponentially many such states.

 ⇒ We need to resort to approximation schemes.

Two Classes of Approximation Schemes

- **Deterministic approximations (Variational methods)**
 - Based on analytical approximations to the posterior distribution
 - E.g. by assuming that it factorizes in a certain form
 - Or that it has a certain parametric form (e.g. a Gaussian).
 ⇒ Can never generate exact results, but are often scalable to large applications.

- **Stochastic approximations (Sampling methods)**
 - Given infinite computational resources, they can generate exact results.
 - Approximation arises from the use of a finite amount of processor time.

 ⇒ Can use the use of Bayesian techniques across many domains.

 ⇒ But: computationally demanding, often limited to small-scale problems.
Approximate Inference

In general, assume we are given the pdf $p(x)$.

To draw samples from this pdf, we can invert the cdf:

$$F_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

Problem 1: Samples might not be independent

- Effective sample size might be much smaller than apparent sample size.

Problem 2:

- If $f(z)$ is small in regions where $p(z)$ is large and vice versa, the expectation may be dominated by regions of small probability.
- Large sample sizes necessary to achieve sufficient accuracy.

Sampling Idea

- Objective:
 - Evaluate expectation of a function $f(x)$ w.r.t. a probability distribution $p(x)$.
 $$E[f] = \int f(x)p(x)dx$$

- Sampling idea:
 - Draw L independent samples x^i with $i = 1, ..., L$ from $p(x)$.
 - This allows the expectation to be approximated by a finite sum
 $$\hat{E}[f] = \frac{1}{L} \sum_{i=1}^{L} f(x^i)$$
 - As long as the samples x^i are drawn independently from $p(x)$, then
 $$\lim_{L \to \infty} \hat{E}[f] = E[f]$$
 \Rightarrow Unbiased estimate, independent of the dimension of x!

Parametric Density Model

- Example:
 - A simple multivariate (d-dimensional) Gaussian model
 $$p(x|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right)$$
 - This is a "generative" model in the sense that we can generate samples x according to the distribution.

Sampling from a pdf (Transformation method)

- In general, assume we are given the pdf $p(x)$ and the corresponding cumulative distribution:
 $$F(x) = \int_{-\infty}^{x} p(t)dt$$

- To draw samples from this pdf, we can invert the cumulative distribution function:
 $$u \sim \text{Uniform}(0, 1) \Rightarrow F^{-1}(u) \sim p(x)$$
Example 1: Sampling from Exponential Distrib.

- **Exponential Distribution**
 \[p(y) = \lambda e^{-\lambda y} \]
 where \(0 \leq y < \infty \).

- **Transformation sampling**
 - Indefinite integral
 \[h(y) = 1 - \exp(-\lambda y) \]
 - Inverse function
 \[y = h(y)^{-1} = -\frac{1}{\lambda} \ln(1 - z) \]
 for a uniformly distributed input variable \(z \).

Example 2: Sampling from Cauchy Distrib.

- **Cauchy Distribution**

- **Transformation sampling**
 - Inverse of integral can be expressed as a \(\tan \) function.
 \[y = h(y)^{-1} = \tan(z) \]
 for a uniformly distributed input variable \(z \).

Note: Efficient Sampling from a Gaussian

- **Problem with transformation method**
 - Integral over Gaussian cannot be expressed in analytical form.
 - Standard transformation approach is very inefficient.

- **More efficient: Box-Muller Algorithm**
 - Generate pairs of uniformly distributed random numbers \(z_1, z_2 \in (-1, 1) \).
 - Discard each pair unless it satisfies \(r^2 = z_1^2 + z_2^2 < 1 \).
 - This leads to a uniform distribution of points inside the unit circle with \(p(z_1, z_2) = 1/\pi \).

Box-Muller Algorithm (cont’d)

- **Box-Muller Algorithm (cont’d)**
 - For each pair \(z_1, z_2 \) evaluate
 \[y_1 = z_1 \left(\frac{-2 \ln r^2}{r^2} \right)^{1/2} \]
 \[y_2 = z_2 \left(\frac{-2 \ln r^2}{r^2} \right)^{1/2} \]
 - Then the joint distribution of \(y_1 \) and \(y_2 \) is given by
 \[p(y_1, y_2) = p(z_1, z_2) \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \]
 \[= \left[\frac{1}{\sqrt{2\pi}} \exp\left(-y_1^2/2\right) \right] \left[\frac{1}{\sqrt{2\pi}} \exp\left(-y_2^2/2\right) \right] \]
 \[\Rightarrow y_1 \text{ and } y_2 \text{ are independent and each has a Gaussian distribution with mean } \mu \text{ and variance } \sigma^2. \]
 - If \(y \sim N(0,1) \), then \(\sigma y + \mu \sim N(\mu, \sigma^2) \).

Box-Muller Algorithm (cont’d)

- **Multivariate extension**
 - If \(z \) is a vector valued random variable whose components are independent and Gaussian distributed with \(N(0,1) \),
 - Then \(y = \mu + Lz \) will have mean \(\mu \) and covariance \(\Sigma \).
 - Where \(\Sigma = LL^T \) is the Cholesky decomposition of \(\Sigma \).

Ancestral Sampling

- **Generalization of this idea to directed graphical models.**
 - Joint probability factorizes into conditional probabilities:
 \[p(x) = \prod_{k=1}^{K} p(x_k | p_{a_k}) \]

- **Ancestral sampling**
 - Assume the variables are ordered such that there are no links from any node to a lower-numbered node.
 - Start with lowest-numbered node and draw a sample from its distribution.
 \[\hat{x}_1 \sim p(x_1) \]
 - Cycle through each of the nodes in order and draw samples from the conditional distribution (where the parent variable is set to its sampled value).
 \[\hat{x}_n \sim p(x_n | p_{a_n}) \]
Logic Sampling

- Extension of Ancestral sampling
 - Directed graph where some nodes are instantiated with observed values.

- Use ancestral sampling, except
 - When sample is obtained for an observed variable, if they agree then sample value is retained and proceed to next variable.
 - If they don’t agree, whole sample is discarded.

- Result
 - Approach samples correctly from the posterior distribution.
 - However, probability of accepting a sample decreases rapidly as the number of observed variables increases.
 - Approach is rarely used in practice.

Rejection Sampling

- Assumptions
 - Sampling directly from \(p(z) \) is difficult.
 - But we can easily evaluate \(p(z) \) (up to some normalization factor \(Z_p \)):
 \[
 p(z) = \frac{1}{Z_p} \tilde{p}(z)
 \]

- Idea
 - We need some simpler distribution \(\tilde{p}(z) \) (called proposal distribution) from which we can draw samples.
 - Choose a constant \(k \) such that: \(\forall z : k\tilde{p}(z) \geq \tilde{p}(z) \)

Rejection Sampling - Discussion

- Limitation: high-dimensional spaces
 - For rejection sampling to be of practical value, we require that \(k\tilde{p}(z) \) be close to the required distribution, so that the rate of rejection is minimal.

- Artificial example
 - Assume that \(p(z) \) is Gaussian with covariance matrix \(\sigma^2 I \)
 - Assume that \(\tilde{p}(z) \) is Gaussian with covariance matrix \(\sigma^2 I \)
 - Obviously: \(\sigma^2 \geq \sigma^2 \)
 - In \(D \) dimensions: \(k = (\sigma/\sigma)_D \)
 - Assume \(\sigma \) is just 1% larger than \(\sigma \).
 - \(D = 1000 \Rightarrow k = 1.01^{1000} \geq 20,000 \)
 - And \(p(\text{accept}) = \frac{1}{k} \)

 \(\Rightarrow \) Often impractical to find good proposal distributions for high dimensions!

Example: Sampling from a Gamma Distib.

- Gamma distribution
 \[
 \text{Gam}(z|a, b) = \frac{1}{\Gamma(a)} b^a z^{a-1} \exp(-bz) \quad a > 1
 \]

- Rejection sampling approach
 - For \(a > 1 \), Gamma distribution has a bell-shaped form.
 - Suitable proposal distribution is Cauchy (for which we can use the transformation method).
 - Generalize Cauchy slightly to ensure it is nowhere smaller than Gamma: \(y = b \tan y + c \) for uniform \(y \).
 - This gives random numbers distributed according to
 \[
 q(z) = \frac{k}{1 + (z-c)^2/b^2}
 \]
 with optimal rejection rate for
 \[
 e = \alpha - 1 \quad b^2 = 2a - 1
 \]
Importance Sampling

- **Approach**
 - Approximate expectations directly (but does not enable to draw samples from \(p(\mathbf{x}) \) directly).
 - Goal:
 \[
 \mathbb{E}[f] = \int f(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}
 \]
- **Simplistic strategy: Grid sampling**
 - Discretize \(x \)-space into a uniform grid.
 - Evaluate the integrand as a sum of the form
 \[
 \mathbb{E}[f] \approx \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{x}^{(l)}) p(\mathbf{x}^{(l)}) d\mathbf{x}
 \]
 - But: number of terms grows exponentially with number of dimensions!

Importance Sampling

- **Typical setting:**
 - \(p(\mathbf{x}) \) can only be evaluated up to an unknown normalization constant
 \[p(\mathbf{x}) = \frac{\pi(\mathbf{x})}{Z_{p}} \]
 - \(q(\mathbf{x}) \) can also be treated in a similar fashion.
 \[q(\mathbf{x}) = \frac{\pi(\mathbf{x})}{Z_{q}} \]
 - Then
 \[
 \mathbb{E}[f] = \frac{Z_{q}}{Z_{p}} \frac{1}{L} \sum_{l=1}^{L} \tilde{r}_{l} f(\mathbf{x}^{(l)})
 \]
 - with: \(\tilde{r}_{l} = \frac{\pi(\mathbf{x}^{(l)})}{q(\mathbf{x}^{(l)})} \)

Importance Sampling - Discussion

- **Observations**
 - Success of importance sampling depends crucially on how well the sampling distribution \(q(\mathbf{x}) \) matches the desired distribution \(p(\mathbf{x}) \).
 - Often, \(p(\mathbf{x})/q(\mathbf{x}) \) is strongly varying and has a significant proportion of its mass concentrated over small regions of \(x \)-space.
 - Weights \(r_{l} \) may be dominated by a few weights having large values.
 - Practical issue: if none of the samples falls in the regions where \(p(\mathbf{x})/q(\mathbf{x}) \) is large...
 - The results may be arbitrary in error.
 - And there will be no diagnostic indication (no large variance in \(r_{l} \)).
 - Key requirement for sampling distribution \(q(\mathbf{x}) \):
 - Should not be small or zero in regions where \(p(\mathbf{x}) \) is significant!
References and Further Reading

- Sampling methods for approximate inference are described in detail in Chapter 11 of Bishop’s book.

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

- Another good introduction to Monte Carlo methods can be found in Chapter 29 of MacKay’s book (also available online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

 David MacKay
 Information Theory, Inference, and Learning Algorithms
 Cambridge University Press, 2003