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= This Lecture: Advanced Machine Learning
=

M A Regression Approaches f X —- R
= « Linear Regression J v | [ e

= . Regularization (Ridge, Lasso) |

s « Kernels (Kernel Ridge Regression)

5 » Gaussian Processes

& A Bayesian Estimation & Bayesian Non -Parametrics |

= s Mixture Models & EM [N i

S « Dirichlet Processes . OO Q\. M
= « Latent Factor Models ? M

« Beta Processes

A SVMs and Structured Output Learning
« SV Regression, SVDD f . X N y

s Large-margin Learning
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Topics of This Lecture

Wi nt er

A Recap: Linear Regression

A Kernels
« Dual representations
« Kernel Ridge Regression
s Properties of kernels
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A Gaussian Processes
« Motivation
s Gaussian Process definition
s Squared exponential covariance function
« Prediction with noise -free observations
s Prediction with noisy observations
« GP Regression
« Influence of hyperparameters
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A Applications
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RWNTH
Recap: Loss Functions for Regression

Wi nt er

A The sqguared loss Is not the only possible choice
s« Poor choice when conditional distribution  p(t]| X) is multimodal.
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A Simple generalization: Minkowski loss

L(t,y(x)) = [y(x) — ¢|* Y

|
o M =

ElLq] = jy(x) i ti"p(x;t)dxdt

A Minimum of E[L ] is given by \/

. Conditional mean for = 2,

« EXpectation

Machi ne

« Conditional median for q= 1, .
. Conditional mode  for q= 0. E

B. Leibe
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3 Recap: Linear Basis Function Models
<

o A Generally, we consider models of the following form

c M-—-1

: yxw) = 3w (x) = whe(x)

© 7=0

5 . where A(x) are known as basis functions .

. In the simplest case, we use linear basis functions: A4(X) = Xg.

A Other popular basis functions

1 - I
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Polynomial Gaussian
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Recap: Reqgularized Least -Squares "

Wi nt er

A Consider more general regularization functions

. 0Ly normso Z{t —wd(x,)}? + Z\wﬂq
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A Effect: Sparsity for ¢ 1.

«  Minimization tends to set many coefficients to zero
B. Leibe
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Recap: Lasso as Bayes Estimation
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ALlreguI ari zatassoon ( o0The

N M

~ . 1 T 2

W = arg H;lfll 2 E 1:{tn - W Cb(Xn)} + A E 1: ‘wj‘
n= J=
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A Interpretation as Bayes Estimation
«  We can think of |Wj |9 as the log -prior density for W, .

A Prior for Lasso (g= 1): Laplacian distribution
1 1 - =

pw) = o exp{-|wl/r}  wih  T=3
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Topics of This Lecture
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A Kernels
« Dual representations
« Kernel Ridge Regression
s Properties of kernels
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Introduction to Kernel Methods

A Dual representations

i

Many linear models for regression and classification can be
reformulated in terms of a dual representation, where
predictions are based on linear combinations of a  kernel
function evaluated at training data points.

For models that are based on a fixed nonlinear feature space
mapping A(X), the kernel function is given by

k(x,x') = o(x)" p(x')

We will see that by substituting the inner product by the kernel,
we can achieve interesting extensions of many well  -known
al gorithmse

B. Leibe
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RWNTH
Dual Representations: Derivation

A Consider a regularized linear regression model

1 & A
J(W) — § Z{WTqb(Xn) o tn}z + §WTW
n=1

with the solution

W= o S W)~ }o(x)

» We can write this as a linear combination of the ~ A(X,,) with
coefficients that are functions of  w:

N
w = Z and(x,) = 'a
n=1

1 N
with  a, = Y ;{WTqb(xn) —tn}

B. Leibe
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Dual Representations: Derivation

A Dual definition

« Instead of working with W, we can formulate the optimization
for a by substituting w =©Ta into J(w):

1 A
J(w) = 5 Z{WTgb(xn) —t}? + §WTW
n=1

1 1 A
J(a) = 5aquI)T<1><I>Ta —al'epap’t + §tTt + EaTq)(I)Ta

. Define the kernel matrix K = ©© T with elements

Kym = qS(Xn)Tgb(Xm) — k(xna Xm)

s Now, the sum -of-squares error can be written as

1 1
J(a) = §aTKKa —alKt + §tTt + %aTKa

B. Leibe
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= Kernel Rldge Regression
=
1 7 T 1 A
J(a) = 52 KKa — a Kt—|—§t t—|—§a Ka
« Solving for a, we obtain al
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a = (K + )\IN)_lt

0t

A Prediction for a new input  Xx:
« Writing k(x) for the vector with elements &, (x) = k(x,,, X)

y(x) = W 6(x) = a Bo(x) = k(x)” (K + ALy) ¢

Machi ne

Y The dual formulation allows the solution to be entirely
expressed in terms of the kernel function K(x,xQ.

Vd

Y The resulting form is known as Kernel Ridge Regression
and allows us to perform non -linear regression.

Advanced
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Why use k(x ,x 9 instead of <A(x),A(x §>7

1. Memory usage
s« Storing A(Xl) , éé\(XN) requires O(NM ) memory.
o Storing K(X 4, X1) , &(Xy, Xy) requires O(N?) memory.

2. Speed
. We might find an expression for k(X;, X;) that is faster to
evaluate than first forming A(x) and then computing
<A(x),A(xQJ>.
« Example: comparing angles (x 2 [0, 2Y}):
(@(2:), ¢(z5)) = ([cos(x;),sin(z;)], [cos(z;), sin(x;)])

= cos(z;) cos(wj) + sin(z;) sin(:cj)

k(zi,z;) = cos(x; —x;)

Slide credit: Christoph Lampert B. Leibe
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Why use k(x ,x 9 instead of <A(x),A(x §>7

Wi nt er

3. Flexibility

« There are kernel functions  K(x;, X;) for which we know that a

Ve

feature transformation Ae xi st s , but we As.no

« This allows us to work with far more general similarity functions.
« We can define kernels on string
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4. Dimensionality

« Since we no longer need to explicitly compute A(x), we can
work with high -dimensional (even infinite -dim.) feature spaces.

Machi ne

A In the following, we take a closer look at the
background behind kernel s a
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Properties of Kernels

A Definition (Positive Definite Kernel Function)

. Let X be anon-empty set. Afunction k: X x X! R iscalled
positive definite kernel function , iff

o K is symmetric,i.e. K(X, xQ =Kk(x§ x) forall x, x62 X, and
« for any set of points X;, €& X, 2 X, the matrix

Kij = (k(z4,75))s,5

IS positive (semi -)definite, i.e. for all vectors X 2 R™

N
Z X,_,;Kinj 2 0

1,7=1

Slide credit: Christoph Lampert B. Leibe
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Hilbert Spaces

Wi nt er

A Definition (Hilbert Space)

(@)

= s A Hilbert Space H is a vector space H with an inner product

= h, i, e.g.amapping

. h:ig HEH! R

_ which is

v « symmetric : hv, va, =hvg vig forall v, v02 H,

= s positive definite v, vi,, Oforall v2 H,

o where hv, viy, =0onlyfor v=0 2 H.

]

= « bilinear : hav, vo, = ahv, vo, for v2 H, a2 R

hv + vQ vai 0= hv, vai 0+ hvg vai 0
A We can treat a Hilbert space like some R", if we only use

concepts like vectors, angles, distances.
A Note: dimH =1 is possible!

B. Leibe
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Properties of Kernels
A Theorem
. Let ki X x X! R be a positive definite kernel function . Then
there exists a Hilbert Space H andamapping ' : X! H such
that

k(z,z') = ((¢(), ¢(x"))2

« where h, .i istheinner productin H.

A Translation
. Take any set X and any function k: X1 X! R.

« If K is a positive definite kernel, then we can use K to learn a

(soft) maximum -margin classifier for the elementsin Xl
A Note
a X can be any set, e.g. X ="all videos on YouTube" or X ="all
permutationsof {1,...,k }", or X ="the internet"

Slide credit: Christoph Lampert
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Example: Bag of Visual Words Representation

Wi nt er

A General framework in visual recognition
s Create a codebook (vocabulary) of prototypical image features
« Represent images as histograms over codebook activations
s Compare two images by any histogram kernel, e.g. A? kernel

(hj — h})z)
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The oKer nel Tri cko

Any algorithm that uses data only in the form

of inner products can be kernelized .

A How to kernelize an algorithm
«  Write the algorithm only in terms of inner products.
« Replace all inner products by kernel function evaluations.

Y The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space H.

« Caveat: working in  H is not a guarantee for better performance.
A good choice of k and model selection are important!

Slide credit: Christoph Lampert B. Leibe
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Outlook

Wi nt er

A Kernels are a widely used concept in Machine Learning
s They are the basis for Support Vector Machines from ML1.
« We will see several other kernelized al gor i t hms 1 n
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A Examples
s Gaussian Processes
a  Support Vector Regression
« Kernel PCA
« Kernel k -Means

V4

i e

Machi ne

ALet s first examine the rol
discriminative models.
Y This will lead us to Gaussian Processes

Advanced
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Topics of This Lecture

A Gaussian Processes
« Motivation
s Gaussian Process definition
s Squared exponential covariance function
« Prediction with noise -free observations
s Prediction with noisy observations
« GP Regression
« Influence of hyperparameters

B. Leibe
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Gaussian Processes

Aso faré

i

i

Considered linear regression models of the form

T
y(x, W) = W @(X)
where W is a vector of parameters
A(X) is a vector of fixed non -linear basis functions.

We showed that a prior distribution over  w induced a prior
distribution over functions  y(X,w).

Given a training set, we evaluated the posterior distribution
over W Y corresponding posterior over regression functions.

This implies a predictive distribution ~ p(t| x) for new inputs  X.

A Gaussian process viewpoint

i

Dispense with the parametric model and instead define a prior
probability distribution over functions directly.

B. Leibe
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Gaussian Process

A Gaussian distribution
« Probability distribution over scalars / vectors.

A Gaussian process (generalization of Gaussian distrib.)
s Describes properties of functions.
« Function: Think of a function as a long vector where each entry
specifies the function value f(X;) at a particular point  X;.
« Issue: How to deal with infinite number of points?

0 If you ask only for properties of the function at a finite number of
poi nt sé

0 Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

A Definition

s A Gaussian process (GP)is a collection of random variables any
finite number of which has a joint Gaussian distribution.

Slide credit: Bernt Schiele B. Leibe
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Gaussian Process

Wi nt er

A Example prior over functions  p(f) )

(@)
= « Represents our prior belief about 1
= functions before seeing any data. .
= . Although specific f
3 mean of zero, the mean of f(x) values
for any fixed X is zero (here). ‘20 " |

input, x

« Favors smooth functions
d l.e. functions cannot vary too rapidly

0 Smoothness is induced by the covariance function of the
Gaussian Process.

b)
c
c
O
@©
=

« Learning in Gaussian processes

d Is mainly defined by finding suitable properties of the covariance
function.

Advanced
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Linear Regression Revisited

ALetds return to the | ineaTr
derive the predictive distribution by working in terms of
distributions over functions  y(x,w)é

A Linear Regression Model
y(x,w) =w' p(x)
« Consider a prior distribution over W given by
p(w) = N(wl0,a™'T)

« For any given value of w, the definition induces a particular
function of X.

« The probability distribution over W therefore induces a
probability distribution over functions  y(X).

B. Leibe
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Linear Regression Revisited

ALinear Regression (contod)

s We want to evaluate this function at specific values of X,
e.g. at the training data points X, €Xy.

s  We are therefore interested in the joint distribution of function
values y(X,) , ¥Xy), which we denote by the vector V.
y = dw

« We know that Yy is a linear combination of Gaussian distributed
variables and is therefore itself Gaussian.

Y Only need to find its mean and covariance.

Ely] = ©E[w]=0
covly] = E[yy']= ©E[ww']©" = C%@@T = K

« with the kernel matrix K = {k(X,X1)} -

B. Leibe
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= Gaussian Process

=

- A This model is a particular example of a Gaussian

< Process.

= « Linear regression with a zero -mean, isotropic Gaussian prior on
- e

]

-l

A General definition

s A Gaussian Processis defined as a probability distribution over
functions y(X) such that the set of values of y(X) evaluated at an

arbitrary set of points  X,;, €X, have a Gaussian distribution.
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« A key point about GPs is that the joint distribution over N
variables y,, €y, is completely specified by the second -order
statistics, namely mean and covariance.

Advanced
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Gaussian Process

A A Gaussian process is completely defined by
s Mean function m(x) and

m(x) = E[t (x)]

» Covariance function k(x,Xx0 )

k(¢;x%) = E[(f (x) i mE)(F (xY) i m(x9))]

«  We write the Gaussian process (GP)

f(x) » GP(M(X);k(x;x9)

Slide adapted from Bernt Schiele B. Leibe
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