Computer Vision - Lecture 21

Structure-from-Motion

29.01.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from Svetlana Lazebnik, Martial Hebert, Steve Seitz
Announcements

• Exam
 - **1st Date:** Monday, 23.02., 13:30 - 17:30h
 - **2nd Date:** Thursday, 26.03., 09:30 - 12:30h
 - Closed-book exam, the core exam time will be 2h.
 - **Admission requirement:** 50% of the exercise points or passed test exam
 - We will send around an announcement with the exact starting times and places by email.

• Test exam
 - **Date:** Thursday, 05.02., 09:15 - 10:45h, room UMIC 025
 - Core exam time will be 1h
 - **Purpose:** Prepare you for the questions you can expect.
 - **Possibility to collect bonus exercise points!**
Announcements (2)

• Last lecture next Monday: Repetition
 - Summary of all topics in the lecture
 - “Big picture” and current research directions
 - Opportunity to ask questions

 Please use this opportunity and prepare questions!
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - Epipolar Geometry and Stereo Basics
 - Camera calibration & Uncalibrated Reconstruction
 - Active Stereo
- Motion
 - Motion and Optical Flow
- 3D Reconstruction (Reprise)
 - Structure-from-Motion
Recap: Estimating Optical Flow

- Given two subsequent frames, estimate the apparent motion field $u(x,y)$ and $v(x,y)$ between them.

- Key assumptions
 - **Brightness constancy**: projection of the same point looks the same in every frame.
 - **Small motion**: points do not move very far.
 - **Spatial coherence**: points move like their neighbors.
Recap: Lucas-Kanade Optical Flow

- Use all pixels in a $K \times K$ window to get more equations.
- Least squares problem:

 $$
 \begin{bmatrix}
 I_x(p_1) & I_y(p_1) \\
 I_x(p_2) & I_y(p_2) \\
 \vdots & \vdots \\
 I_x(p_{25}) & I_y(p_{25})
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 =
 -
 \begin{bmatrix}
 I_t(p_1) \\
 I_t(p_2) \\
 \vdots \\
 I_t(p_{25})
 \end{bmatrix}
 \begin{bmatrix}
 A \\
 d = b
 \end{bmatrix}
 $$

- Minimum least squares solution given by solution of

 $$(A^T A) \quad d = A^T b$$

 $$
 \begin{bmatrix}
 \sum I_x I_x & \sum I_x I_y \\
 \sum I_x I_y & \sum I_y I_y
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 v
 \end{bmatrix}
 =
 -
 \begin{bmatrix}
 \sum I_x I_t \\
 \sum I_y I_t
 \end{bmatrix}
 \begin{bmatrix}
 A^T A \\
 A^T b
 \end{bmatrix}
 $$

Recall the Harris detector!
Recap: Iterative Refinement

- Estimate velocity at each pixel using one iteration of LK estimation.
- Warp one image toward the other using the estimated flow field.
- Refine estimate by repeating the process.

- Iterative procedure
 - Results in subpixel accurate localization.
 - Converges for small displacements.
Recap: Coarse-to-fine Estimation

- Gaussian pyramid of image 1:
 - $u=10$ pixels
 - $u=5$ pixels
 - $u=2.5$ pixels
 - $u=1.25$ pixels

- Gaussian pyramid of image 2:
Recap: Coarse-to-fine Estimation

- Gaussian pyramid of image 1
- Run iterative L-K
- Warp & upsample
- Run iterative L-K
- Gaussian pyramid of image 2

Slide credit: Steve Seitz
Topics of This Lecture

• Structure from Motion (SfM)
 - Motivation
 - Ambiguity

• Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

• Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

• Applications
Structure from Motion

- Given: \(m \) images of \(n \) fixed 3D points
 \[x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]

- Problem: estimate \(m \) projection matrices \(P_i \) and \(n \) 3D points \(X_j \) from the \(mn \) correspondences \(x_{ij} \)

Slide credit: Svetlana Lazebnik
What Can We Use This For?

- E.g. movie special effects
Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same:

$$x = PX = \left(\frac{1}{k}P\right)(kX)$$

\implies It is impossible to recover the absolute scale of the scene!
Structure from Motion Ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1/k$, the projections of the scene points in the image remain exactly the same.

- More generally: if we transform the scene using a transformation Q and apply the inverse transformation to the camera matrices, then the images do not change.

\[x = PX = (PQ^{-1})QX \]
Reconstruction Ambiguity: Similarity

\[x = PX = (PQ_S^{-1})Q_SX \]
Reconstruction Ambiguity: Affine

\[x = PX = (PQ_A^{-1})Q_AX \]
Reconstruction Ambiguity: Projective

\[x = PX = (PQ_P^{-1})Q_PX \]
Projective Ambiguity
From Projective to Affine

Images from Hartley & Zisserman
From Affine to Similarity

Images from Hartley & Zisserman
Hierarchy of 3D Transformations

- **Projective**
 - 15dof
 - \[
 \begin{bmatrix}
 A & t \\
 v^T & v
 \end{bmatrix}
 \]
 - Preserves intersection and tangency

- **Affine**
 - 12dof
 - \[
 \begin{bmatrix}
 A & t \\
 0^T & 1
 \end{bmatrix}
 \]
 - Preserves parallellism, volume ratios

- **Similarity**
 - 7dof
 - \[
 \begin{bmatrix}
 sR & t \\
 0^T & 1
 \end{bmatrix}
 \]
 - Preserves angles, ratios of length

- **Euclidean**
 - 6dof
 - \[
 \begin{bmatrix}
 R & t \\
 0^T & 1
 \end{bmatrix}
 \]
 - Preserves angles, lengths

- With no constraints on the camera calibration matrix or on the scene, we get a *projective* reconstruction.
- Need additional information to *upgrade* the reconstruction to affine, similarity, or Euclidean.

Slide credit: Svetlana Lazebnik
Topics of This Lecture

- **Structure from Motion (SfM)**
 - Motivation
 - Ambiguity

- **Affine SfM**
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

- **Projective SfM**
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

- **Applications**
Structure from Motion

- Let’s start with *affine cameras* (the math is easier)
Orthographic Projection

• Special case of perspective projection
 - Distance from center of projection to image plane is infinite

 Projection matrix:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\Rightarrow (x, y)
\]
Affine Cameras

Orthographic Projection

Parallel Projection

Slide credit: Svetlana Lazebnik
Affine Cameras

- A general affine camera combines the effects of an affine transformation of the 3D space, orthographic projection, and an affine transformation of the image:

\[
P = [3 \times 3 \text{ affine}] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [4 \times 4 \text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}
\]

- Affine projection is a linear mapping + translation in inhomogeneous coordinates

\[
x = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = AX + b
\]

Projection of world origin

Slide credit: Svetlana Lazebnik
Affine Structure from Motion

• Given: \(m \) images of \(n \) fixed 3D points:
 \[x_{ij} = A_i X_j + b_i, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n \]

• Problem: use the \(mn \) correspondences \(x_{ij} \) to estimate \(m \) projection matrices \(A_i \) and translation vectors \(b_i \), and \(n \) points \(X_j \)

• The reconstruction is defined up to an arbitrary *affine* transformation \(Q \) (12 degrees of freedom):
 \[
 \begin{bmatrix}
 A & b \\
 0 & 1
 \end{bmatrix}
 \rightarrow
 \begin{bmatrix}
 A & b \\
 0 & 1
 \end{bmatrix}
 Q^{-1},
 \quad
 \begin{bmatrix}
 X \\
 1
 \end{bmatrix}
 \rightarrow
 Q
 \begin{bmatrix}
 X \\
 1
 \end{bmatrix}
 \]

• We have \(2mn \) knowns and \(8m + 3n \) unknowns (minus 12 dof for affine ambiguity).

 - Thus, we must have \(2mn \geq 8m + 3n - 12 \).
 - For two views, we need four point correspondences.
Affine Structure from Motion

• Centering: subtract the centroid of the image points

\[
\hat{x}_{ij} = x_{ij} - \frac{1}{n} \sum_{k=1}^{n} x_{ik} = A_i X_j + b_i - \frac{1}{n} \sum_{k=1}^{n} (A_i X_k + b_i)
\]

\[
= A_i \left(X_j - \frac{1}{n} \sum_{k=1}^{n} X_k \right) = A_i \hat{X}_j
\]

• For simplicity, assume that the origin of the world coordinate system is at the centroid of the 3D points.
• After centering, each normalized point \(x_{ij} \) is related to the 3D point \(X_i \) by

\[
\hat{x}_{ij} = A_i X_j
\]
Affine Structure from Motion

- Let’s create a $2m \times n$ data (measurement) matrix:

$$D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \cdots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \cdots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \cdots & \hat{X}_{mn}
\end{bmatrix}$$

Cameras (2m)

Points (n)

Slide credit: Svetlana Lazebnik
Affine Structure from Motion

• Let’s create a $2m \times n$ data (measurement) matrix:

$$
D = \begin{bmatrix}
\hat{X}_{11} & \hat{X}_{12} & \ldots & \hat{X}_{1n} \\
\hat{X}_{21} & \hat{X}_{22} & \ldots & \hat{X}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{X}_{m1} & \hat{X}_{m2} & \ldots & \hat{X}_{mn}
\end{bmatrix} = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_n
\end{bmatrix}
$$

Points (3 × n)

Cameras (2m × 3)

• The measurement matrix $D = MS$ must have rank 3!

Factorizing the Measurement Matrix

\[\text{Measurements} = \text{Motion} \times \text{Shape} \]

\[\mathbf{D} = \mathbf{M} \mathbf{S} \]
Factorizing the Measurement Matrix

- Singular value decomposition of D:

\[D = U W V^T \]
Factorizing the Measurement Matrix

- Singular value decomposition of D:

\[
\begin{align*}
D & = U W V_T \\
& = U_3 \begin{bmatrix} W_3 \\ I \end{bmatrix} \begin{bmatrix} V_3^T \\ I \end{bmatrix}
\end{align*}
\]

To reduce to rank 3, we just need to set all the singular values to 0 except for the first 3.
Factorizing the Measurement Matrix

• Obtaining a factorization from SVD:

\[D = U_3 \times W_3 \times V_3^T \]
Factorizing the Measurement Matrix

- Obtaining a factorization from SVD:

\[
\begin{align*}
\mathbf{D} & = \mathbf{U}_3 \times 3 \mathbf{W}_3 \times \mathbf{V}_3^T \\
\mathbf{D} & = \mathbf{M} \times \mathbf{S}
\end{align*}
\]

Possible decomposition:
\[
\mathbf{M} = \mathbf{U}_3 \mathbf{W}_3^{1/2} \quad \mathbf{S} = \mathbf{W}_3^{1/2} \mathbf{V}_3^T
\]

This decomposition minimizes \(|\mathbf{D-MS}|^2|
Affine Ambiguity

- The decomposition is not unique. We get the same D by using any 3×3 matrix C and applying the transformations $M \rightarrow MC$, $S \rightarrow C^{-1}S$.
- That is because we have only an affine transformation and we have not enforced any Euclidean constraints (like forcing the image axes to be perpendicular, for example). We need a *Euclidean upgrade*.
Estimating the Euclidean Upgrade

• Orthographic assumption: image axes are perpendicular and scale is 1.

- This can be converted into a system of $3m$ equations:

 \[
 \begin{align*}
 \hat{a}_{i1} \cdot \hat{a}_{i2} &= 0 \\
 |\hat{a}_{i1}| &= 1 \\
 |\hat{a}_{i2}| &= 1 \\
 \end{align*}
 \]

 \[
 \begin{align*}
 a_{i1}^T C C^T a_{i2} &= 0 \\
 a_{i1}^T C C^T a_{i1} &= 1, \quad i = 1, \ldots, m \\
 a_{i2}^T C C^T a_{i2} &= 1 \\
 \end{align*}
 \]

 for the transformation matrix C ⇒ goal: estimate C

Slide adapted from S. Lazebnik, M. Hebert
Estimating the Euclidean Upgrade

- System of $3m$ equations:
 \[
 \begin{cases}
 \hat{a}_{i1} \cdot \hat{a}_{i2} = 0 \\
 |\hat{a}_{i1}| = 1 \\
 |\hat{a}_{i2}| = 1
 \end{cases}
 \quad \Leftrightarrow \quad
 \begin{cases}
 a_{i1}^T C C^T a_{i2} = 0 \\
 a_{i1}^T C C^T a_{i1} = 1, \quad i = 1, \ldots, m \\
 a_{i2}^T C C^T a_{i2} = 1
 \end{cases}
 \]

- Let
 \[L = C C^T\]
 \[A_i = \begin{bmatrix} a_{i1}^T \\ a_{i2}^T \end{bmatrix}, \quad i = 1, \ldots, m\]

- Then this translates to $3m$ equations in L
 \[A_i L A_i^T = I, \quad i = 1, \ldots, m\]

 > Solve for L
 > Recover C from L by Cholesky decomposition: $L = C C^T$
 > Update M and S: $M = MC$, $S = C^{-1}S$
Algorithm Summary

- Given: \(m \) images and \(n \) features \(x_{ij} \)
- For each image \(i \), center the feature coordinates.
- Construct a \(2m \times n \) measurement matrix \(D \):
 - Column \(j \) contains the projection of point \(j \) in all views
 - Row \(i \) contains one coordinate of the projections of all the \(n \) points in image \(i \)
- Factorize \(D \):
 - Compute SVD: \(D = U W V^T \)
 - Create \(U_3 \) by taking the first 3 columns of \(U \)
 - Create \(V_3 \) by taking the first 3 columns of \(V \)
 - Create \(W_3 \) by taking the upper left \(3 \times 3 \) block of \(W \)
- Create the motion and shape matrices:
 - \(M = U_3 W_3^{\frac{1}{2}} \) and \(S = W_3^{\frac{1}{2}} V_3^T \) (or \(M = U_3 \) and \(S = W_3 V_3^T \))
- Eliminate affine ambiguity

Slide credit: Martial Hebert
Reconstruction Results

Image Source: Tomasi & Kanade
Dealing with Missing Data

• So far, we have assumed that all points are visible in all views
• In reality, the measurement matrix typically looks something like this:
Dealing with Missing Data

• Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

• Incremental bilinear refinement

(1) Perform factorization on a dense sub-block

Dealing with Missing Data

- Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 - Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

- Incremental bilinear refinement

 1. Perform factorization on a dense sub-block
 2. Solve for a new 3D point visible by at least two known cameras (linear least squares)

Slide credit: Svetlana Lazebnik
Dealing with Missing Data

• Possible solution: decompose matrix into dense sub-blocks, factorize each sub-block, and fuse the results
 ➢ Finding dense maximal sub-blocks of the matrix is NP-complete (equivalent to finding maximal cliques in a graph)

• Incremental bilinear refinement

1. Perform factorization on a dense sub-block
2. Solve for a new 3D point visible by at least two known cameras (linear least squares)
3. Solve for a new camera that sees at least three known 3D points (linear least squares)

Slide credit: Svetlana Lazebnik
Comments: Affine SfM

• Affine SfM was historically developed first.
• It is valid under the assumption of *affine cameras*.
 - Which does not hold for real physical cameras...
 - ...but which is still tolerable if the scene points are far away from the camera.

• For good results with real cameras, we typically need projective SfM.
 - Harder problem, more ambiguity
 - Math is a bit more involved...
 (Here, only basic ideas. If you want to implement it, please look at the H&Z book for details).
Topics of This Lecture

• Structure from Motion (SfM)
 - Motivation
 - Ambiguity

• Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

• Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

• Applications
Projective Structure from Motion

- Given: \(m \) images of \(n \) fixed 3D points
 \[
 x_{ij} = P_i X_j, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n
 \]
- Problem: estimate \(m \) projection matrices \(P_i \) and \(n \) 3D points \(X_j \) from the \(mn \) correspondences \(x_{ij} \)
Projective Structure from Motion

- Given: m images of n fixed 3D points
 - $z_{ij} x_{ij} = P_i X_j$, $i = 1, \ldots, m$, $j = 1, \ldots, n$

- Problem: estimate m projection matrices P_i and n 3D points X_j from the mn correspondences x_{ij}

- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation Q: $X \rightarrow QX$, $P \rightarrow PQ^{-1}$

- We can solve for structure and motion when $2mn \geq 11m + 3n - 15$

- For two cameras, at least 7 points are needed.
Projective SfM: Two-Camera Case

- Assume fundamental matrix F between the two views
 - First camera matrix: $[I|0]Q^{-1}$
 - Second camera matrix: $[A|b]Q^{-1}$
- Let $\tilde{X} = QX$, then $zx = [I \mid 0]\tilde{X}$, $z'x' = [A|b]\tilde{X}$
- And
 $$z'x' = A[I \mid 0]\tilde{X} + b = zAx + b$$
 $$z'x' \times b = zAx \times b$$
 $$(z'x' \times b) \cdot x' = (zAx \times b) \cdot x'$$
 $$0 = (zAx \times b) \cdot x'$$
- So we have
 $$x'^T[b_{\times}]Ax = 0$$
 $$F = [b_{\times}]A \quad \text{b: epipole (}F^Tb = 0\text{)}, \quad A = -[b_{\times}]F$$
Projective SfM: Two-Camera Case

- This means that if we can compute the fundamental matrix between two cameras, we can directly estimate the two projection matrices from F.

- Once we have the projection matrices, we can compute the 3D position of any point X by triangulation.

- How can we obtain both kinds of information at the same time?
Projective Factorization

\[
D = \begin{bmatrix}
 z_{11}x_{11} & z_{12}x_{12} & \cdots & z_{1n}x_{1n} \\
 z_{21}x_{21} & z_{22}x_{22} & \cdots & z_{2n}x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 z_{m1}x_{m1} & z_{m2}x_{m2} & \cdots & z_{mn}x_{mn}
\end{bmatrix}
= \begin{bmatrix}
P_1 \\
P_2 \\
\vdots \\
P_m
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
\]

Points (4 \times n)

Cameras (3m \times 4)

\[
D = MS \text{ has rank 4}
\]

- If we knew the depths \(z \), we could factorize \(D \) to estimate \(M \) and \(S \).
- If we knew \(M \) and \(S \), we could solve for \(z \).
- Solution: iterative approach (alternate between above two steps).
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*

Slide credit: Svetlana Lazebnik
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - *triangulation*
Sequential Structure from Motion

- Initialize motion from two images using fundamental matrix
- Initialize structure
- For each additional view:
 - Determine projection matrix of new camera using all the known 3D points that are visible in its image - *calibration*
 - Refine and extend structure: compute new 3D points, re-optimize existing points that are also seen by this camera - *triangulation*
- Refine structure and motion: *bundle adjustment*

Slide credit: Svetlana Lazebnik
Bundle Adjustment

- Non-linear method for refining structure and motion
- Minimizing mean-square reprojection error

\[E(P, X) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(x_{ij}, P_i X_j)^2 \]
Bundle Adjustment

- Seeks the Maximum Likelihood (ML) solution assuming the measurement noise is Gaussian.
- It involves adjusting the bundle of rays between each camera center and the set of 3D points.
- Bundle adjustment should generally be used as the final step of any multi-view reconstruction algorithm.
 - Considerably improves the results.
 - Allows assignment of individual covariances to each measurement.
- However...
 - It needs a good initialization.
 - It can become an extremely large minimization problem.
- Very efficient algorithms available.
Projective Ambiguity

- If we don’t know anything about the camera or the scene, the best we can get with this is a reconstruction up to a projective ambiguity Q.
 - This can already be useful.
 - E.g. we can answer questions like “at what point does a line intersect a plane”?

- If we want to convert this to a “true” reconstruction, we need a *Euclidean upgrade*.
 - Need to put in additional knowledge about the camera (calibration) or about the scene (e.g. from markers).
 - Several methods available (see F&P Chapter 13.5 or H&Z Chapter 19)
Self-Calibration

- Self-calibration (auto-calibration) is the process of determining intrinsic camera parameters directly from uncalibrated images.
- For example, when the images are acquired by a single moving camera, we can use the constraint that the intrinsic parameter matrix remains fixed for all the images.
 - Compute initial projective reconstruction and find 3D projective transformation matrix \(Q \) such that all camera matrices are in the form \(P_i = K [R_i \mid t_i] \).
- Can use constraints on the form of the calibration matrix: square pixels, zero skew, fixed focal length, etc.
Practical Considerations (1)

1. Role of the baseline
 - Small baseline: large depth error
 - Large baseline: difficult search problem

• Solution
 - Track features between frames until baseline is sufficient.

Slide adapted from Steve Seitz
Practical Considerations (2)

2. There will still be many outliers
 - Incorrect feature matches
 - Moving objects

⇒ Apply RANSAC to get robust estimates based on the inlier points.

3. Estimation quality depends on the point configuration
 - Points that are close together in the image produce less stable solutions.

⇒ Subdivide image into a grid and try to extract about the same number of features per grid cell.
General Guidelines

• Use calibrated cameras wherever possible.
 ➢ It makes life so much easier, especially for SfM.

• SfM with 2 cameras is *far* more robust than with a single camera.
 ➢ Triangulate feature points in 3D using stereo.
 ➢ Perform 2D-3D matching to recover the motion.
 ➢ More robust to loss of scale (main problem of 1-camera SfM).

• Any constraint on the setup can be useful
 ➢ E.g. square pixels, zero skew, fixed focal length in each camera
 ➢ E.g. fixed baseline in stereo SfM setup
 ➢ E.g. constrained camera motion on a ground plane
 ➢ Making best use of those constraints may require adapting the algorithms (some known results are described in H&Z).
Structure-from-Motion: Limitations

- Very difficult to reliably estimate **metric** SfM unless
 - Large (x or y) motion or
 - Large field-of-view and depth variation

- Camera calibration important for Euclidean reconstruction

- Need good feature tracker
Topics of This Lecture

• Structure from Motion (SfM)
 - Motivation
 - Ambiguity

• Affine SfM
 - Affine cameras
 - Affine factorization
 - Euclidean upgrade
 - Dealing with missing data

• Projective SfM
 - Two-camera case
 - Projective factorization
 - Bundle adjustment
 - Practical considerations

• Applications
Commercial Software Packages

- boujou
 (http://www.2d3.com/)
- PFTrack
 (http://www.thepixelfarm.co.uk/)
- MatchMover
 (http://www.realviz.com/)
- SynthEyes
 (http://www.ssontech.com/)
- Icarus
 (http://aig.cs.man.ac.uk/research/reveal/icarus/)
- Voodoo Camera Tracker
 (http://www.digilab.uni-hannover.de/)
Applications: Matchmoving

- Putting virtual objects into real-world videos

 Original sequence **SfM results** **Tracked features** **Final video**

Videos from Stefan Hafeneger
Applications: Large-Scale SfM from Flickr

B. Leibe
References and Further Reading

- A (relatively short) treatment of affine and projective SfM and the basic ideas and algorithms can be found in Chapters 12 and 13 of

- More detailed information (if you really want to implement this) and better explanations can be found in Chapters 10, 18 (factorization) and 19 (self-calibration) of

 R. Hartley, A. Zisserman *Multiple View Geometry in Computer Vision* 2nd Ed., Cambridge Univ. Press, 2004