Recap: Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s

Recap: Recognition Using Histograms

- Histogram comparison

Simple algorithm
1. Build a set of histograms $H = \{h_i\}$ for each known object
 - More exactly, for each view of each object
2. Build a histogram h_t for the test image.
3. Compare h_t to each $h_i \in H$
 - Using a suitable comparison measure
4. Select the object with the best matching score
 - Or reject the test image if no object is similar enough.

"Nearest-Neighbor" strategy
Generalization of the Idea

- Histograms of derivatives
 - D_x
 - D_y
 - D_{xx}
 - D_{xy}
 - D_{yy}

General Filter Response Histograms

- Any local descriptor (e.g., filter, filter combination) can be used to build a histogram.

Examples:
 - Gradient magnitude
 $$M_{xy} = \sqrt{D_x^2 + D_y^2}$$
 - Gradient direction
 $$\text{Dir} = \arctan \frac{D_y}{D_x}$$
 - Laplacian
 $$Lap = D_{xx} + D_{yy}$$

Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

Multidimensional Histograms

Examples

Special Case: Multiscale Representations

- Combination of several scales
 - Descriptors are computed at different scales.
 - Each scale captures different information about the object.
 - Size of the support region grows with increasing σ.
 - Feature vectors capture both local details and larger-scale structures.
Generalization: Filter Banks

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

Example Application of a Filter Bank

- Filter bank of 8 filters
- Input image
- 8 response images: magnitude of filtered outputs, per filter

Extension: Colored Derivatives

- \(Y_C^1 C_2 \) color space
 - \(\begin{pmatrix} Y \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} g_r/2 & g_y/2 & g_b/2 \\ 3g_y/2 & -3g_b/2 & 0 \\ g_r^2/g_y^2 - g_b^2/g_y^2 & 0 & 1 \end{pmatrix} \begin{pmatrix} R \\ G \\ B \end{pmatrix} \)
 - Color-opponent space
 - Inspired by models of the human visual system
 - \(Y \) = intensity
 - \(C_1 \) = red-green
 - \(C_2 \) = blue-yellow

Extension: Colored Derivatives

- Generalization: derivatives along
 - \(Y \) axis \(\rightarrow \) intensity differences
 - \(C_1 \) axis \(\rightarrow \) red-green differences
 - \(C_2 \) axis \(\rightarrow \) blue-yellow differences

- Feature vector is rotated such that \(D_y = 0 \)
 - Rotation-invariant descriptor

Summary: Multidimensional Representations

- Pros
 - Work very well for recognition.
 - Usually, simple combinations are sufficient
 (e.g. \(D_x, D_y, \text{Mag-Lap} \))
 - But multiple scales are very important!
 - Generalization: filter banks

- Cons
 - High-dimensional histograms \(\rightarrow \) lots of storage space
 - Global representation \(\rightarrow \) not robust to occlusion

You’re Now Ready for First Applications...
Topics of This Lecture

• Subspace Methods for Recognition
  Motivation
• Principal Component Analysis (PCA)
  Derivation
  Object recognition with PCA
  Eigenimages/Eigenfaces
  Limitations
• Discussion: Global representations for recognition
  Vectors of pixel intensities
  Histograms
  Localized Histograms
• Application: Image completion

Representations for Recognition

• Global object representations
  We’ve seen histograms as one example
  What could be other suitable representations?
• More generally, we want to obtain representations that are well-suited for
  Recognizing a certain class of objects
  Identifying individuals from that class (identification)
• How can we arrive at such a representation?
• Approach 1:
  Come up with a brilliant idea and tweak it until it works.
  Can we do this more systematically?

Example: The Space of All Face Images

• When viewed as vectors of pixel values, face images are extremely high-dimensional.
 100x100 image = 10,000 dimensions
• However, relatively few 10,000-dimensional vectors correspond to valid face images.
• We want to effectively model the subspace of face images.

The Space of All Face Images

• We want to construct a low-dimensional linear subspace that best explains the variation in the set of face images

Subspace Methods

• Idea
  Represent images as points in a high-dim. vector space
  Valid images populate only a small fraction of the space
  Characterize the subspace spanned by images

Subspace Methods

• Today’s topic: PCA
Topics of This Lecture

• Subspace Methods for Recognition
 • Motivation
• Principal Component Analysis (PCA)
 • Derivation
 • Object recognition with PCA
 • Eigenimages/Eigenfaces
 • Limitations
• Discussion: Global representations for recognition
 • Vectors of pixel intensities
 • Histograms
 • Localized Histograms
• Application: Image completion

Principal Component Analysis

• Given: \(N \) data points \(x_1, \ldots, x_N \) in \(\mathbb{R}^d \)
• We want to find a new set of features that are linear combinations of original ones:
 \[u(x_i) = u^T(x_i - \mu) \]
 \((\mu: \text{mean of data points}) \)
• What unit vector \(u \) in \(\mathbb{R}^d \) captures the most variance of the data?

Interpretation of PCA

• Compute eigenvectors of covariance \(\Sigma \).
 • Eigenvectors: main directions
 • Eigenvalues: variances along eigenvector
• Result: coordinate transform to best represent the variance of the data

Remember: Fitting a Gaussian

• Mean and covariance matrix of data define a Gaussian model
Interpretation of PCA

- Now, suppose we want to represent the data using just a single dimension.
 - I.e., project it onto a single axis
 - What would be the best choice for this axis?
- The first eigenvector gives us the best reconstruction.
 - Direction that retains most of the variance of the data.

Properties of PCA

- It can be shown that the mean square error between x_i and its reconstruction using only m principle eigenvectors is given by the expression:
 $$
 \sum_{j=1}^{m} \lambda_j - \sum_{j=1}^{m} \lambda_j = \sum_{j=m+1}^{N} \lambda_j
 $$
 - where λ_j are the eigenvalues

- Interpretation
 - PCA minimizes reconstruction error
 - PCA maximizes variance of projection
 - Finds a more “natural” coordinate system for the sample data.

Projection and Reconstruction

- An n-pixel image $x \in \mathbb{R}^n$ can be projected to a low-dimensional feature space $y \in \mathbb{R}^m$ by $y = Ux$
- From $y \in \mathbb{R}^m$, the reconstruction of the point is Uy
- The error of the reconstruction is $\|x - U^T Ux\|

Example: Object Representation

- Object Detection by Distance TO Eigenspace
 - Is an image window w likely to contain a learned object?
 - Project window to subspace and reconstruct as earlier.
 - Compute the distance between w and the reconstruction (reprojection error).
 - Local minima of distance over all image locations \Rightarrow object locations
Eigenfaces: Key Idea

- Assume that most face images lie on a low-dimensional subspace determined by the first k directions of maximum variance (where $k < d$).
- Use PCA to determine the vectors u_1, \ldots, u_k that span that subspace:
 $$ x \approx \mu + w_1 u_1 + w_2 u_2 + \ldots + w_k u_k $$
- Represent each face using its “face space” coordinates (w_1, \ldots, w_k)
- Perform nearest-neighbor recognition in “face space”

Eigenfaces Example

- Training images x_1, \ldots, x_N

Eigenface Example 2 (Better Alignment)

- Face x in “face space” coordinates:
 $$ x \rightarrow [u_1^T(x - \mu), \ldots, u_k^T(x - \mu)] $$
 $$ = w_1, \ldots, w_k $$
- Reconstruction:
 $$ x = \mu + w_1 u_1 + w_2 u_2 + \ldots + w_k u_k $$
Recognition with Eigenspaces

- Process labeled training images:
 - Find mean \(\mu \) and covariance matrix \(\Sigma \)
 - Find \(k \) principal components (eigenvectors of \(\Sigma \)) \(u_1, \ldots, u_k \)
 - Project each training image \(x_i \) onto subspace spanned by principal components:
 \[(w_{i1}, \ldots, w_{ik}) = (u_1^T(x_i - \mu), \ldots, u_k^T(x_i - \mu)) \]

- Given novel image \(x \):
 - Project onto subspace:
 \[(w_{1}, \ldots, w_{k}) = (u_1^T(x - \mu), \ldots, u_k^T(x - \mu)) \]
 - Optional: check reconstruction error \(x - \hat{x} \) to determine whether image is really a face
 - Classify as closest training face in \(k \)-dimensional subspace

Obj. Identification by Distance IN Eigenspace

- Objects are represented as coordinates in an \(n \)-dim. eigenspace.
- Example:
 - 3D space with points representing individual objects or a manifold representing parametric eigenspace (e.g., orientation, pose, illumination).

Parametric Eigenspace

- Object identification / pose estimation
 - Find nearest neighbor in eigenspace [Murase & Nayar, IJCV'95]

Applications: Recognition, Pose Estimation

- Estimate parameters by finding the NN in the eigenspace

Applications: Visual Inspection

- Don’t really implement PCA this way!
 - Why?
 1. How big is \(\Sigma \)?
 - \(n \times n \), where \(n \) is the number of pixels in an image!
 - However, we only have \(m \) training examples, typically \(m < n \).
 - \(\Sigma \) will at most have rank \(m \)
 2. You only need the first \(k \) eigenvectors
Singular Value Decomposition (SVD)

- Any \(m \times n \) matrix \(A \) may be factored such that \(A = U\Sigma V^T \)
 - \(U: m \times m \), orthogonal matrix
 - Columns of \(U \) are the eigenvectors of \(AA^T \)
 - \(V: n \times n \), orthogonal matrix
 - Columns are the eigenvectors of \(A^TA \)
 - \(\Sigma: m \times n \), diagonal with non-negative entries \((\sigma_1, \sigma_2, \ldots, \sigma_s) \)
 - with \(s = \min(m, n) \) are called the singular values.
 - Singular values are the square roots of the eigenvalues of both \(AA^T \) and \(A^TA \). Columns of \(U \) are corresponding eigenvectors!

- Result of SVD algorithm: \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_s \)

Performing PCA with SVD

- Singular values of \(A \) are the square roots of eigenvalues of both \(AA^T \) and \(A^TA \).
 - Columns of \(U \) are the corresponding eigenvectors.
- And \(\sum_{i=1}^{s} \sigma_i a_i a_i^T = [a_1 \ldots a_s] [a_1 \ldots a_s]^T = AA^T \)
- Covariance matrix \(\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T \)
- So, ignoring the factor \(1/n \), subtract mean image \(\mu \) from each input image, create data matrix \(A = (x_i - \bar{x}) \), and perform (thin) SVD on the data matrix.

Limitations

- PCA assumes that the data has a Gaussian distribution (mean \(\mu \), covariance matrix \(\Sigma \))
- The shape of this dataset is not well described by its principal components

Limitations

- Global appearance method: not robust to misalignment, background variation
 - Easy fix (with considerable manual overhead)
 - Need to align the training examples
- The direction of maximum variance is not always good for classification
Topics of This Lecture

- Subspace Methods for Recognition
 - Motivation
- Principal Component Analysis (PCA)
 - Derivation
 - Object recognition with PCA
 - Eigenimages/Eigenfaces
 - Limitations
- Discussion: Global representations for recognition
 - Vectors of pixel intensities
 - Histograms
 - Localized Histograms
- Application: Image completion

Feature Extraction: Global Appearance

- Simple holistic descriptions of image content
 - Vector of pixel intensities

Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Generate low-dimensional representation of appearance with a linear subspace.

Project new images to “face space”.

Recognition via nearest neighbors in face space.

Gradient-based Representations

- Better: Edges, contours, and (oriented) intensity gradients

Cartoon example: an albino koala
Matching Edge Templates

- Example: Chamfer matching

At each window position, compute average min distance between points on template (T) and input (I).

\[D_{\text{Chamfer}}(T, I) = \frac{1}{|I|} \sum_{t \in T} d(t) \]

Gradient-based Representations

- Improved discriminance: localized gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Contrast-normalization: try to correct for variable illumination

Gradient-based Representations: Histograms of Oriented Gradients (HOG)

Map each grid cell in the input window to a histogram counting the gradients per orientation.

Code available: http://pascal.inrialpes.fr/soft/olt/

References and Further Reading

- Background information on PCA can be found in Chapter 22.3 of

- Important Papers (available on webpage)
 - M. Turk, A. Pentland
 Eigenfaces for Recognition
 - P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman