Recall: Exercise sheet 3 is due this week
• Hough Transform
• Mean-shift clustering
• Mean-shift segmentation
• Image segmentation with Graph Cuts
 [last Tuesday’s topic]
• The exercise will be on Thursday, 20.11.
 ⇒ Submit your results by Wednesday night.

Course Outline
• Image Processing Basics
• Segmentation
 - Segmentation and Grouping
 - Graph-Theoretic Segmentation
• Recognition
 - Global Representations
 - Subspace representations
• Local Features & Matching
• Object Categorization
• 3D Reconstruction
• Motion and Tracking

Recap: MRFs for Image Segmentation
• MRF formulation
 ⇒ Minimize the energy
 $E(x, y) = \sum_i \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$

Recap: Energy Formulation
• Energy function
 $E(x, y) = \sum_i \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$

• Unary potentials ϕ
 - Encode local information about the given pixel/patch
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?

• Pairwise potentials ψ
 - Encode neighborhood information
 - How different is a pixel/patch’s label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

Recap: How to Set the Potentials?
• Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians
 $\phi(x_i, y_i; \theta) = \log \sum_k \theta_k(x_i, k)p(k|x_i)N(y_i; \hat{y}_k, \Sigma_k)$

 ⇒ Learn color distributions for each label
Recap: How to Set the Potentials?

- **Pairwise potentials**
 - **Potts Model**

 \[
 \psi(x_i, x_j; \theta_{pq}) = \theta_{pq} \delta(x_i \neq x_j)
 \]

 - Simplest discontinuity preserving model.
 - Discontinuities between any pair of labels are penalized equally.
 - Useful when labels are unordered or number of labels is small.

 - Extension: "Contrast sensitive Potts model"

 \[
 \psi(x_i, x_j, g(y); \theta_{pq}) = -\theta_{pq} g(y) \delta(x_i \neq x_j)
 \]

 \[\text{where } g(y) = e^{-\beta |y|} \quad \beta = \frac{1}{2} \left(\text{avg} \left(|y_i| + |y_j| \right) \right)^{-1}\]

 - Discourages label changes except in places where there is also a large change in the observations.

Recap: Graph-Cuts Energy Minimization

- Solve an equivalent graph cut problem
 1. Introduce extra nodes: source and sink
 2. Weight connections to source/sink (t-links) by \(\phi(x_i = s)\) and \(\phi(x_i = t)\), respectively.
 3. Weight connections between nodes (n-links) by \(\psi(x_i, x_j)\).
 4. Find the minimum cost cut that separates source from sink.

 \[\Rightarrow \text{Solution is equivalent to minimum of the energy.}\]

- \(s\)-t MinCut can be solved efficiently
 - Dual to the well-known max flow problem
 - Very efficient algorithms available for regular grid graphs (1-2 MPixels/s)
 - Globally optimal result for 2-class problems

Recap: When Can \(s\)-t Graph Cuts Be Applied?

- \(s\)-t graph cuts can only globally minimize binary energies that are **submodular**.

 \[E(L) \text{ can be minimized by } s\text{-t graph cuts } \iff E(s, t) + E(t, s) \leq E(s, t) + E(t, s)\]

 \[\text{Submodularity } \iff \text{convexity}\]

- Submodularity is the discrete equivalent to convexity.
 - Implies that every local energy minimum is a global minimum.
 - \(\Rightarrow\) Solution will be globally optimal.

GrabCut: Data Model

- Obtained from interactive user input
 - User marks foreground and background regions with a brush
 - Alternatively, user can specify a bounding box

GrabCut: Coherence Model

- An object is a coherent set of pixels:

 \[
 \psi(x, y) = \gamma \sum_{m=1}^{M} \sum_{n=1}^{N} \delta \left[x_m \neq x_n \right] e^{-\gamma |x_m - x_n|}
 \]

 - How to choose \(\gamma\)?

GraphCut Applications: “GrabCut”

- Interactive Image Segmentation [Boykov & Jolly, ICCV’01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges
 - **Procedure**
 - User marks foreground and background regions with a brush.
 - This is used to create an initial segmentation which can then be corrected by additional brush strokes.
Iterated Graph Cuts

Result

Energy after each iteration

Iterated Graph Cuts

R

Foreground

G

Color model
(Mixture of Gaussians)

GrabCut: Example Results

Foreground & Background

Background

1

2

3

4

This is included in the newest version of MS Office!

Applications: Interactive 3D Segmentation

Topics of This Lecture

• Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms

• Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
 - Extension: colored derivatives

Object Recognition

Challenges

• Viewpoint changes
 - Translation
 - Image-plane rotation
 - Scale changes
 - Out-of-plane rotation

• Illumination
• Noise
• Clutter
• Occlusion
Perceptual and Sensory Augmented Computing

Appearance-Based Recognition

- Basic assumption
 - Objects can be represented by a set of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

⇒ Fundamental paradigm shift in the 90’s

Global Representation

- Idea
 - Represent each object (view) by a global descriptor.
 - For recognizing objects, just match the descriptors.
 - Some modes of variation are built into the descriptor, the others have to be incorporated in the training data.
 - e.g. a descriptor can be made invariant to image-plane rotations.
 - Other variations:
 - Viewpoint changes
 - Translation
 - Noise
 - Scale changes
 - Clutter
 - Out-of-plane rotation
 - Occlusion

Color: Use for Recognition

- Color:
 - Color stays constant under geometric transformations
 - Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion

- Idea
 - Directly use object colors for recognition
 - Better: use *statistics* of object colors

Color Histograms

- Color statistics
 - Here: RGB as an example
 - Given: tristimulus R,G,B for each pixel
 - Compute 3D histogram
 - \(H(R,G,B) = \#\text{pixels with color } (R,G,B) \)

Color Normalization

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by \(I = R + G + B \):
 - "Chromatic representation"
 \[
 r = \frac{R}{R + G + B}, \quad \quad g = \frac{G}{R + G + B}, \quad \quad b = \frac{B}{R + G + B}
 \]

- Observation:
 - Since \(r \cdot g + b = 1 \), only 2 parameters are necessary
 - E.g. one can use \(r \) and \(g \)
 - and obtains \(b = 1 - r \cdot g \)
Color Histograms
- Robust representation

Topics of This Lecture
- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
 - Extension: colored derivatives

Recognition Using Histograms
- Histogram comparison

What Is a Good Comparison Measure?
- How to define matching cost?
Comparison Measures: Euclidean Distance

- **Definition**
 - Euclidean Distance (=L₂ norm)
 \[d(Q, V) = \sum_i (q_i - v_i)^2 \]

- **Motivation**
 - Focuses on the differences between the histograms.
 - Interpretation: distance in feature space.
 - Range: [0, \(\infty\)]
 - All cells are weighted equally.
 - Not very robust to outliers!

Comparison Measures: Mahalanobis Distance

- **Definition**
 - Mahalanobis distance (Quadratic Form)
 \[d(Q, V) = (Q - V)^T \Sigma^{-1} (Q - V) \]
 \[= \sum_i \sum_j \frac{(q_i - v_i)(q_j - v_j)}{\sigma_{ij}} \]

- **Motivation**
 - Interpretation:
 - Weighted distance in feature space.
 - Compensate for correlated data.
 - Range: [0, \(\infty\)]
 - More robust to certain outliers.

Comparison Measures: Chi-Square

- **Definition**
 - Chi-square
 \[\chi^2(Q, V) = \sum_i \frac{(q_i - v_i)^2}{q_i + v_i} \]

- **Motivation**
 - Statistical background:
 - Test if two distributions are different
 - Possible to compute a significance score
 - Range: [0, \(\infty\)]
 - Cells are not weighted equally!
 - More robust to outliers than Euclidean distance.
 - If the histograms contain enough observations...

Comparison Measures: Bhattacharyya Distance

- **Definition**
 - Bhattacharyya coefficient
 \[BC(Q, V) = \sum_i \sqrt{q_i v_i} \]

- **Common distance measure**
 \[d_{BC}(Q, V) = \sqrt{1 - BC(Q, V)} \]

- **Motivation**
 - Statistical background:
 - BC measures the statistical separability between two distributions.
 - Range: [0, \(\infty\)]
 - (Reason for \(d_{BC}\): triangle inequality)

Comparison Measures: Histogram Intersection

- **Definition**
 - Intersection
 \[\cap(Q, V) = \sum_i \min(q_i, v_i) \]

- **Motivation**
 - Measures the common part of both histograms
 - Range: [0, 1]
 - For unnormalized histograms, use the following formula
 \[\cap(Q, V) = \frac{1}{2} \left(\sum_i \min(q_i, v_i) - \sum_i q_i + \sum_i v_i \right) \]
Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth

(distance moved) * (amount moved)

\[\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} \times \text{(amount moved)} \]

\[\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} = \text{WORK} \]

What is the minimum amount of work to convert Q into V?
EMD Computation

- Constraints

1. Move “earth” only from Q to V

\[f_{ij} \geq 0 \]

2. Cannot send more “earth” than there is

\[\sum_{i=1}^{m} f_{ij} \leq w_{ij} \]

3. V cannot receive more than it can hold

\[\sum_{j=1}^{n} f_{ij} \leq w_{ij} \]

4. As much “earth” as possible must be moved.
 - Either Q must be completely spent
 - Or V must be completely filled.

\[\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min \left(\sum_{i=1}^{m} w_{ij}, \sum_{j=1}^{n} w_{ij} \right) \]

Comp. Measures: Earth Movers Distance

- Motivation: Moving Earth
 - Linear Programming Problem
 - Distance measure

\[D_{EMD}(Q,V) = \frac{\sum_{i,j} d_{ij} f_{ij}}{\sum_{i,j} f_{ij}} \]

- Advantages
 - Nearness measure without quantization
 - Partial matching
 - A true metric

- Disadvantage: expensive computation
 - Efficient algorithms available for 1D
 - Approximations for higher dimensions...

Summary: Comparison Measures

- Vector space interpretation
 - Euclidean distance
 - Mahalanobis distance

- Statistical motivation
 - Chi-square
 - Bhattacharyya

- Information-theoretic motivation
 - Kullback-Leibler divergence, Jeffreys divergence

- Histogram motivation
 - Histogram intersection

- Ground distance
 - Earth Movers Distance (EMD)
Comparison for Image Retrieval

- L2 distance
- Jeffrey divergence
- χ^2 statistics
- Earth Movers Distance

Histogram Comparison

- Which measure is best?
 - Depends on the application...
 - Euclidean distance is often not robust enough.
 - Both Intersection and χ^2 give good performance for histograms.
 - Intersection is a bit more robust.
 - χ^2 is a bit more discriminative.
 - KL/Jeffrey works sometimes very well, but is expensive.
 - EMD is most powerful, but also quite expensive
 - There exist many other measures not mentioned here
 - e.g. statistical tests: Kolmogorov-Smirnov
 - Cramer/Von Mises

Summary: Recognition Using Histograms

- Simple algorithm
 1. Build a set of histograms $H=\{h_i\}$ for each known object
 2. Build a histogram h_t for the test image.
 3. Compare h_t to each $h_i \in H$
 4. Select the object with the best matching score
 - Using a suitable comparison measure
 - Or reject the test image if no object is similar enough.

Topics of This Lecture

- Object Recognition
 - Appearance-based recognition
 - Global representations
 - Color histograms
- Recognition using histograms
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
- Probabilistic Interpretation
 - Probability density estimation
 - Recognition from local samples
 - Extension: recognition of multiple objects in an image
 - Extension: colored derivatives

Localization by Histogram Backprojection

- "Where in the image are the colors we're looking for?"
 - Idea: Normalized histogram represents probability distribution $p(x|\text{obj})$

- Histogram backprojection
 - For each pixel x, compute the likelihood that this pixel color was caused by the object: $p(x|\text{obj})$
 - This value is projected back into the image (i.e. the image values are replaced by the corresponding histogram values).

Color-Based Skin Detection

- Used 18,696 images to build a general color model.
- Histogram representation

M. Jones and J. Rehg, Statistical Color Models with Application to Skin Detection. IJCV 2002.
Discussion: Color Histograms

- **Pros**
 - Invariant to object translation & rotation
 - Slowly changing for out-of-plane rotation
 - No perfect segmentation necessary
 - Histograms change gradually when part of the object is occluded
 - Possible to recognize deformable objects
 - E.g., a pullover

- **Cons**
 - Pixel colors change with the illumination
 - "color constancy problem"
 - Spectral composition (illumination color)
 - Not all objects can be identified by their color distribution.

Topics of This Lecture

- **Object Recognition**
 - Appearance-based recognition
 - Global representations
 - Color histograms

- **Recognition using histograms**
 - Histogram comparison measures
 - Histogram backprojection
 - Multidimensional histograms
 - Extension: colored derivatives

Generalization of the Idea

- **Histograms of derivatives**
 - D_x
 - D_y
 - D_{xx}
 - D_{xy}
 - D_{yy}

General Filter Response Histograms

- Any local descriptor (e.g., filter, filter combination) can be used to build a histogram.

- **Examples**
 - Gradient magnitude
 $$ Mag = \sqrt{D_x^2 + D_y^2} $$
 - Gradient direction
 $$ Dir = \arctan \frac{D_y}{D_x} $$
 - Laplacian
 $$ Lap = D_{xx} + D_{yy} $$

Multidimensional Representations

- Combination of several descriptors
 - Each descriptor is applied to the whole image.
 - Corresponding pixel values are combined into one feature vector.
 - Feature vectors are collected in multidimensional histogram.

Multidimensional Histograms

- **Examples**
Multidimensional Representations

- Useful simple combinations
 - D_xD_y: Rotation-variant
 - Descriptor changes when image is rotated.
 - Useful for recognizing oriented structures (e.g., vertical lines)
 - Mag-Lap: Rotation-invariant
 - Descriptor does not change when image is rotated.
 - Can be used to recognize rotated objects.
 - Less discriminant than rotation-variant descriptor.

Special Case: Multiscale Representations

- Combination of several scales
 - Descriptors are computed at different scales.
 - Each scale captures different information about the object.
 - Size of the support region grows with increasing σ.
 - Feature vectors capture both local details and larger-scale structures.

Generalization: Filter Banks

- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Example Application of a Filter Bank

- 8 response images: magnitude of filtered outputs, per filter

Extension: Colored Derivatives

- YC1C2 color space
 \[
 \begin{bmatrix}
 Y \\
 C_1 \\
 C_2
 \end{bmatrix} =
 \begin{bmatrix}
 g_r & g_b & g_b \\
 \frac{3g_y - 2}{2} & \frac{3g_y - 2}{2} & 0 \\
 \frac{9g_y - 2}{2} & \frac{9g_y - 2}{2} & \frac{9g_y - 2}{2}
 \end{bmatrix}
 \begin{bmatrix}
 R \\
 G \\
 B
 \end{bmatrix}
 \]

- Color-opponent space
 - Inspired by models of the human visual system
 - Y: Intensity
 - C_1: Red-green
 - C_2: Blue-yellow

Extension: Colored Derivatives

- Generalization: derivatives along
 - Y axis → intensity differences
 - C_1 axis → red-green differences
 - C_2 axis → blue-yellow differences

- Feature vector is rotated such that $D_y = 0$
 - Rotation-invariant descriptor
Summary: Multidimensional Representations

- **Pros**
 - Work very well for recognition.
 - Usually, simple combinations are sufficient (e.g. $D_x D_y$, Mag-Lap)
 - But multiple scales are very important!
 - Generalization: filter banks

- **Cons**
 - High-dimensional histograms \Rightarrow lots of storage space
 - Global representation \Rightarrow not robust to occlusion

Application: Brand Identification in Video

References and Further Reading

- Background information on histogram-based object recognition can be found in the following paper

- Matlab filterbank code available at
 - http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

false detection