Advanced Machine Learning
Lecture 9
Mixture Models
14.11.2012

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
This Lecture: **Advanced Machine Learning**

- **Regression Approaches**
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes

- **Bayesian Estimation & Bayesian Non-Parametrics**
 - Prob. Distributions, Approx. Inference
 - Mixture Models & EM
 - Dirichlet Processes
 - Latent Factor Models
 - Beta Processes

- **SVMs and Structured Output Learning**
 - SV Regression, SVDD
 - Large-margin Learning

B. Leibe
Recap: Importance Sampling

- **Approach**
 - Approximate expectations directly (but does not enable to draw samples from $p(z)$ directly).
 - Goal:
 $$\mathbb{E}[f] = \int f(z)p(z)dz$$

- **Idea**
 - Use a proposal distribution $q(z)$ from which it is easy to sample.
 - Express expectations in the form of a finite sum over samples $\{z^{(l)}\}$ drawn from $q(z)$.
 $$\mathbb{E}[f] \approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(z^{(l)})}{q(z^{(l)})} f(z^{(l)})$$

Image source: C.M. Bishop, 2006
Recap: MCMC - Markov Chain Monte Carlo

• Overview
 - Allows to sample from a large class of distributions.
 - Scales well with the dimensionality of the sample space.

• Idea
 - We maintain a record of the current state \(z^{(\tau)} \)
 - The proposal distribution depends on the current state: \(q(z | z^{(\tau)}) \)
 - The sequence of samples forms a Markov chain \(z^{(1)}, z^{(2)}, ... \)

• Approach
 - At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
 - Different variants of MCMC for different criteria.
Recap: Markov Chains - Properties

- **Invariant distribution**
 - A distribution is said to be **invariant** (or **stationary**) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
 - Transition probabilities:
 \[T \left(z^{(m)}, z^{(m+1)} \right) = p \left(z^{(m+1)} | z^{(m)} \right) \]
 - For homogeneous Markov chain, distribution \(p^*(z) \) is invariant if:
 \[p^*(z) = \sum_{z'} T(z', z) p^*(z') \]

- **Detailed balance**
 - Sufficient (but not necessary) condition to ensure that a distribution is invariant:
 \[p^*(z) T(z, z') = p^*(z') T(z', z) \]
 - A Markov chain which respects detailed balance is **reversible**.
Detailed Balance

- **Detailed balance means**
 - If we pick a state from the target distribution $p(z)$ and make a transition under T to another state, it is just as likely that we will pick z_A and go from z_A to z_B than that we will pick z_B and go from z_B to z_A.

- It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

 $$\sum_{z'} p^*(z') T(z', z) = \sum_{z'} p^*(z) T(z, z')$$

 $$= p^*(z) \sum_{z'} p(z'|z) = p^*(z)$$

B. Leibe
Recap: MCMC - Metropolis Algorithm

- **Metropolis algorithm**
 - Proposal distribution is symmetric: \(q(Z_A|Z_B) = q(Z_B|Z_A) \)
 - The new candidate sample \(z^* \) is accepted with probability
 \[
 A(z^*, z^{(\tau)}) = \min \left(1, \frac{\tilde{p}(z^*)}{\tilde{p}(z^{(\tau)})} \right)
 \]
 ⇒ New candidate samples always accepted if \(\tilde{p}(z^*) \geq \tilde{p}(z^{(\tau)}) \).
 - The algorithm sometimes accepts a state with lower probability.

- **Metropolis-Hastings algorithm**
 - Generalization: Proposal distribution not necessarily symmetric.
 - The new candidate sample \(z^* \) is accepted with probability
 \[
 A(z^*, z^{(\tau)}) = \min \left(1, \frac{\tilde{p}(z^*)q_k(z^{(\tau)}|z^*)}{\tilde{p}(z^{(\tau)})q_k(z^*|z^{(\tau)})} \right)
 \]
 where \(k \) labels the members of the set of considered transitions.

Slide adapted from Bernt Schiele
Recap: MCMC - Metropolis-Hastings Algorithm

- Properties
 - We can show that $p(z)$ is an invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm.
 - We show detailed balance:

$$A(z', z) = \min \left\{ 1, \frac{\tilde{p}(z')q_k(z' \mid z)}{\tilde{p}(z)q_k(z \mid z')} \right\}$$

$$\tilde{p}(z)q_k(z' \mid z)A_k(z', z) = \min \left\{ \tilde{p}(z)q_k(z' \mid z), \tilde{p}(z')q_k(z \mid z') \right\}$$

$$= \min \left\{ \tilde{p}(z')q_k(z \mid z'), \tilde{p}(z)q_k(z' \mid z) \right\}$$

$$\tilde{p}(z)q_k(z' \mid z)A_k(z', z) = \tilde{p}(z')q_k(z \mid z')A_k(z, z')$$

$$\tilde{p}(z)T(z, z') = \tilde{p}(z')T(z', z)$$

Update: This was wrong on the first version of the slides (also wrong in the Bishop book)!
Recap: Gibbs Sampling

• Approach
 - MCMC-algorithm that is simple and widely applicable.
 - May be seen as a special case of Metropolis-Hastings.

• Idea
 - Sample variable-wise: replace z_i by a value drawn from the distribution $p(z_i | z_{\setminus i})$.
 - This means we update one coordinate at a time.
 - Repeat procedure either by cycling through all variables or by choosing the next variable.

• Properties
 - The algorithm always accepts!
 - Completely parameter free.
 - Can also be applied to subsets of variables.
Topics of This Lecture

• Recap: Mixtures of Gaussians
 - Mixtures of Gaussians
 - ML estimation
 - EM algorithm for MoGs

• An alternative view of EM
 - Latent variables
 - General EM
 - Mixtures of Gaussians revisited
 - Mixtures of Bernoulli distributions

• The EM algorithm in general
 - Generalized EM
 - Monte Carlo EM
Recap: Mixture of Gaussians (MoG)

- "Generative model"

\[
p(x) = \sum_{j=1}^{M} p(x|\theta_j)p(j)
\]

\[
p(j) = \pi_j
\]

"Weight" of mixture component

Mixture component

Mixture density
Recap: Mixture of Multivariate Gaussians

- Multivariate Gaussians

\[
p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)
\]

\[
p(x|\theta_j) = \frac{1}{(2\pi)^{D/2}|\Sigma_j|^{1/2}} \exp\left\{ -\frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j) \right\}
\]

- Mixture weights / mixture coefficients:

\[
p(j) = \pi_j \text{ with } 0 \leq \pi_j \leq 1 \text{ and } \sum_{j=1}^{M} \pi_j = 1
\]

- Parameters:

\[
\theta = (\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M)
\]
Recap: Mixture of Multivariate Gaussians

• “Generative model”

\[
p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)
\]

\[
p(j) = \pi_j
\]

\[
p(x | \theta) = \sum_{j=1}^{3} \pi_j p(x | \theta_j)
\]
Recap: ML for Mixtures of Gaussians

- **Maximum Likelihood**

 \[E = - \ln L(\theta) = - \sum_{n=1}^{N} \ln p(x_n|\theta) \]

- We can already see that this will be difficult, since

\[
\ln p(X|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k) \right)
\]

This will cause problems!
Recap: ML for Mixture of Gaussians

- **Minimization:**

 \[
 \frac{\partial E}{\partial \mu_j} = - \sum_{n=1}^{N} \frac{\partial}{\partial \mu_j} p(x_n | \theta_j) \frac{\sum_{k=1}^{K} p(x_n | \theta_k)}{\sum_{k=1}^{K} p(x_n | \theta_k)}
 \]

 \[
 = - \sum_{n=1}^{N} \left(\Sigma^{-1}(x_n - \mu_j) \frac{p(x_n | \theta_j)}{\sum_{k=1}^{K} p(x_n | \theta_k)} \right)
 \]

 \[
 = - \Sigma^{-1} \sum_{n=1}^{N} (x_n - \mu_j) \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \]

 \[
 \overset{!}{=} 0
 \]

- **We thus obtain**

 \[
 \Rightarrow \mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n)x_n}{\sum_{n=1}^{N} \gamma_j(x_n)}
 \]

 \[
 = \gamma_j(x_n)
 \]

 "responsibility" of component \(j\) for \(x_n\)
Recap: ML for Mixtures of Gaussians

• But...

\[
\mu_j = \frac{\sum_{n=1}^{N} \gamma_j(x_n) x_n}{\sum_{n=1}^{N} \gamma_j(x_n)}
\]

\[
\gamma_j(x_n) = \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{k=1}^{N} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}
\]

• I.e. there is no direct analytical solution!

\[
\frac{\partial E}{\partial \mu_j} = f(\pi_1, \mu_1, \Sigma_1, \ldots, \pi_M, \mu_M, \Sigma_M)
\]

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but the EM algorithm provides a simpler alternative.
Recap: EM Algorithm

- **Expectation-Maximization (EM) Algorithm**
 - **E-Step**: softly assign samples to mixture components
 \[
 \gamma_j(x_n) \leftarrow \frac{\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}{\sum_{n=1}^{N} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)} \quad \forall j = 1, \ldots, K, \quad n = 1, \ldots, N
 \]
 - **M-Step**: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[
 \hat{N}_j \leftarrow \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j
 \]
 \[
 \hat{\pi}_j^{\text{new}} \leftarrow \frac{\hat{N}_j}{N}
 \]
 \[
 \hat{\mu}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n) x_n
 \]
 \[
 \hat{\Sigma}_j^{\text{new}} \leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^{N} \gamma_j(x_n) (x_n - \hat{\mu}_j^{\text{new}})(x_n - \hat{\mu}_j^{\text{new}})^T
 \]

Slide adapted from Bernt Schiele
Recap: EM Algorithm - An Example

![Diagram showing the evolution of the EM algorithm with increasing iterations (L = 1, L = 2, L = 5, L = 20).](image-source-c-m-bishop-2006)
Recap: EM - Caveats

- When implementing EM, we need to take care to avoid singularities in the estimation!
 - Mixture components may collapse on single data points.
 - E.g. consider the case $\Sigma_k = \sigma_k^2 I$ (this also holds in general)
 - Assume component j is exactly centered on data point x_n. This data point will then contribute a term in the likelihood function
 \[
 \mathcal{N}(x_n|x_n, \sigma_j^2 I) = \frac{1}{\sqrt{2\pi \sigma_j}}
 \]
 - For $\sigma_j \to 0$, this term goes to infinity!

⇒ Need to introduce regularization
 - Enforce minimum width for the Gaussians

\[
N(x_n|x_n, \sigma_j^2 I) = \frac{1}{\sqrt{2\pi \sigma_j}}
\]
Application: Image Segmentation

- User assisted image segmentation
 - User marks two regions for foreground and background.
 - Learn a MoG model for the color values in each region.
 - Use those models to classify all other pixels.
 - Simple segmentation procedure (building block for more complex applications)
Application: Color-Based Skin Detection

- Collect training samples for skin/non-skin pixels.
- Estimate MoG to represent the skin/non-skin densities

Outlook for Today

- Criticism
 - This is all very nice, but in the ML lecture, the EM algorithm miraculously fell out of the air.
 - Why do we actually solve it this way?

- This lecture
 - We will take a more general view on EM
 - Different interpretation in terms of latent variables
 - Detailed derivation
 - This will allow us to derive EM algorithms also for other cases.
 - In particular, we will use it for estimating mixtures of Bernoulli distributions in the next lecture.
Topics of This Lecture

• Recap: Mixtures of Gaussians
 - Mixtures of Gaussians
 - ML estimation
 - EM algorithm for MoGs

• An alternative view of EM
 - Latent variables
 - General EM
 - Mixtures of Gaussians revisited
 - Mixtures of Bernoulli distributions

• The EM algorithm in general
 - Generalized EM
 - Monte Carlo EM
Gaussian Mixtures as Latent Variable Model

• Mixture of Gaussians
 - Can be written as linear superposition of Gaussians in the form
 \[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \]

• Let’s write this in a different form...
 - Introduce a \(K \)-dimensional binary random variable \(z \) with a 1-of-\(K \) coding, i.e., \(z_k = 1 \) and all other elements are zero.
 - Define the joint distribution over \(x \) and \(z \) as
 \[p(x, z) = p(x|z)p(z) \]
 - This corresponds to the following graphical model:
Gaussian Mixtures as Latent Variable Models

• Marginal distribution over z

 - Specified in terms of the mixing coefficients π_k, such that

 $$p(z_k = 1) = \pi_k$$

 where $0 \cdot \pi_j \cdot 1$ and $\sum_{j=1}^{K} \pi_j = 1$.

 - Since z uses a 1-of-K representation, we can also write this as

 $$p(z) = \prod_{k=1}^{K} \pi_k^{z_k}$$

 - Similarly, we can write for the conditional distribution

 $$p(x|z) = \prod_{k=1}^{K} \mathcal{N}(x|\mu_k, \Sigma_k)^{z_k}$$

B. Leibe
Gaussian Mixtures as Latent Variable Models

- **Marginal distribution of** \(x \)
 - Summing the joint distribution over all possible states of \(z \)

 \[
 p(x) = \sum_z p(x, z) = \sum_z p(z)p(x|z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)
 \]

- **What have we gained by this?**
 - The resulting formula looks still the same after all...
 \[
 \Rightarrow \text{We have represented the marginal distribution in terms of latent variables } z.
 \]
 - Since \(p(x) = \sum_z p(x, z) \), there is a corresponding latent variable \(z_n \) for each data point \(x_n \).
 - We are now able to work with the joint distribution \(p(x, z) \) instead of the marginal distribution \(p(x) \).
 \[
 \Rightarrow \text{This will lead to significant simplifications...}
 \]
Gaussian Mixtures as Latent Variable Models

- Conditional probability of z given x:
 - Use again the “responsibility” notation $\gamma_k(z_k)$
 \[
 \gamma(z_k) \equiv p(z_k = 1 | x) = \frac{p(z_k = 1) p(x | z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1) p(x | z_j = 1)}
 \]
 \[
 = \frac{\pi_k \mathcal{N}(x | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x | \mu_j, \Sigma_j)}
 \]
 - We can view π_k as the prior probability of $z_k = 1$ and $\gamma(z_k)$ as the corresponding posterior once we have observed x.
Sidenote: Sampling from a Gaussian Mixture

- **MoG Sampling**
 - We can use ancestral sampling to generate random samples from a Gaussian mixture model.
 1. Generate a value \(\hat{z} \) from the marginal distribution \(p(z) \).
 2. Generate a value \(\hat{x} \) from the conditional distribution \(p(x|\hat{z}) \).

Samples from the joint \(p(x, z) \)
Samples from the marginal \(p(x) \)
Evaluating the responsibilities \(\gamma(z_{nk}) \)

![Image source: C.M. Bishop, 2006](image_url)
Alternative View of EM

• Complementary view of the EM algorithm
 - The goal of EM is to find ML solutions for models having latent variables.

 • Notation
 - Set of all data \(X = [x_1, \ldots, x_N]^T \)
 - Set of all latent variables \(Z = [z_1, \ldots, z_N]^T \)
 - Set of all model parameters \(\theta \)

 • Log-likelihood function
 \[
 \log p(X|\theta) = \log \left\{ \sum_Z p(X, Z|\theta) \right\}
 \]

 • Key observation: summation inside logarithm \(\Rightarrow\) difficult.
Alternative View of EM

- Now, suppose we were told for each observation in X the corresponding value of the latent variable Z...
 - Call $\{X, Z\}$ the complete data set and refer to the actual observed data X as incomplete.

- The likelihood for the complete data set now takes the form
 \[
 \log p(X, Z | \theta)
 \]
 \Rightarrow Straightforward to marginalize...
Alternative View of EM

- In practice, however,…
 - We are not given the complete data set \{X,Z\}, but only the incomplete data \(X\).
 - Our knowledge of the latent variable values in \(Z\) is given only by the posterior distribution \(p(Z|X, \theta)\).
 - Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variable:
 \[
 Q(\theta, \theta^{old}) = \sum_Z p(Z|X, \theta^{old}) \log p(X, Z|\theta)
 \]
 - This corresponds to the E-step of the EM algorithm.
 - In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set \(\theta^{new}\).
 \[
 \theta^{new} = \arg \max_{\theta} Q(\theta, \theta^{old})
 \]
General EM Algorithm

- **Algorithm**
 1. Choose an initial setting for the parameters θ^{old}
 2. **E-step**: Evaluate $p(Z|X, \theta^{old})$
 3. **M-step**: Evaluate θ^{new} given by
 \[\theta^{new} = \arg \max_{\theta} Q(\theta, \theta^{old}) \]

 where
 \[Q(\theta, \theta^{old}) = \sum_{Z} p(Z|X, \theta^{old}) \log p(X, Z|\theta) \]
 4. While not converged, let $\theta^{old} \leftarrow \theta^{new}$ and return to step 2.
Remark: MAP-EM

• Modification for MAP
 - The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\theta)$ is defined over the parameters.
 - Only changes needed:

2. **E-step**: Evaluate $p(Z|X, \theta^{\text{old}})$

3. **M-step**: Evaluate θ^{new} given by

$$
\theta^{\text{new}} = \arg \max_{\theta} Q(\theta, \theta^{\text{old}}) + \log p(\theta)
$$

⇒ Suitable choices for the prior will remove the ML singularities!
Gaussian Mixtures Revisited

- Applying the latent variable view of EM
 - Goal is to maximize the log-likelihood using the observed data X
 \[
 \log p(X|\theta) = \log \left\{ \sum_Z p(X, Z|\theta) \right\}
 \]
 - Corresponding graphical model:

- Suppose we are additionally given the values of the latent variables Z.
 - The corresponding graphical model for the complete data now looks like this:
Gaussian Mixtures Revisited

- **Maximize the likelihood**
 - For the complete-data set \(\{X, Z\} \), the likelihood has the form

 \[
 p(X, Z | \mu, \Sigma, \pi) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(x_n | \mu_k, \Sigma_k)^{z_{nk}}
 \]

 - Taking the logarithm, we obtain

 \[
 \log p(X, Z | \mu, \Sigma, \pi) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k) \right\}
 \]

 - Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.

 \Rightarrow \text{Much simpler solution to the ML problem.}

 - Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are “assigned” to that component.
Gaussian Mixtures Revisited

- **Maximization w.r.t. mixing coefficients**
 - More complex, since the π_k are coupled by the summation constraint
 \[
 \sum_{j=1}^{K} \pi_j = 1
 \]
 - Solve with a Lagrange multiplier
 \[
 \log p(X, Z|\mu, \Sigma, \pi) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)
 \]
 - Solution (after a longer derivation):
 \[
 \pi_k = \frac{1}{N} \sum_{n=1}^{N} z_{nk}
 \]
 - The complete-data log-likelihood can be maximized trivially in closed form.
Gaussian Mixtures Revisited

- In practice, we don’t have values for the latent variables
 - Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
 - The posterior distribution takes the form

\[
p(Z | X, \mu, \Sigma, \pi) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)]^{z_{nk}}
\]

and factorizes over \(n \), so that the \(\{z_n\} \) are independent under the posterior.

Expected value of indicator variable \(z_{nk} \) under the posterior.

\[
E[z_{nk}] = \frac{\sum_{z_{nk}} z_{nk} [\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)]^{z_{nk}}}{\sum_{z_{nj}} [\pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)]^{z_{nj}}}
\]

\[
= \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)} = \gamma(z_{nk})
\]
Gaussian Mixtures Revisited

- Continuing the estimation
 - The complete-data log-likelihood is therefore

\[
\mathbb{E}_Z[\log p(X, Z | \mu, \Sigma, \pi)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k) \right\}
\]

\[\Rightarrow\] This is precisely the EM algorithm for Gaussian mixtures as derived before.
References and Further Reading

• More information about EM and MoG estimation is available in Chapter 9 of Bishop’s book (recommendable to read).

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

• Additional information
 - Original EM paper:

 - EM tutorial: