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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Kernels (Kernel Ridge Regression) 

 Gaussian Processes 
 

• Bayesian Estimation & Bayesian Non-Parametrics  

 Prob. Distributions, Approx. Inference 

 Mixture Models & EM 

 Dirichlet Processes 

 Latent Factor Models  

 Beta Processes 
 

• SVMs and Structured Output Learning 

 SV Regression, SVDD 

 Large-margin Learning 
B. Leibe 
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Correction: Bayesian Model Selection 

• Discussion 

 Marginal likelihood is main difference to non-Bayesian methods 

 
 

 It automatically incorporates a trade-off 

between the model fit and the model 

complexity: 

– A simple model can only account 

for a limited range of possible 

sets of target values – if a simple 

model fits well, it obtains a high 

marginal likelihood. 

– A complex model can account for 

a large range of possible sets of 

target values – therefore, it can 

never attain a very high marginal  

likelihood. 
3 

B. Leibe Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006 
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• Bernoulli distribution 

 Probability distribution over x 2 {0,1}: 

 

 

 
 

• Binomial distribution 

 Generalization for m outcomes out of N trials 

Recap: Binary Variables 

4 
B. Leibe Slide adapted from C. Bishop 
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Recap: The Beta Distribution 

• Beta distribution 

 Distribution over ¹ 2 [0,1]: 

 

 

 

 

 

 

 where ¡(x) is the gamma function, a continuous generalization 

of the factorial. (                        iff x is an integer). 
 

• Properties 

 The Beta distribution generalizes the Binomial to arbitrary 

values of a and b, while keeping the same functional form. 

 It is therefore a conjugate prior for the Bernoulli and Binomial. 
5 
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Multinomial Variables 

• Multinomial variables 

 Variables that can take one of K possible distinct states 

 Convenient: 1-of-K coding scheme:  

 

• Generalization of the Bernoulli distribution 

 Distribution of x with K outcomes 

 

 

 
 

 with the constraints 

6 
B. Leibe Slide adapted from C. Bishop 
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Recap: Multinomial Variables 

• Multinomial Distribution 

 Variables using 1-of-K coding scheme:  

 Joint distribution over m1,…,mK conditioned on ¹ and N 

 

 

 

 

 

 
 

 with the constraints 

 

7 
B. Leibe Slide adapted from C. Bishop 
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Recap: The Dirichlet Distribution 

• Dirichlet Distribution 

 Multivariate generalization of the Beta distribution 

 

 

 

 

 

 

 
 

• Properties 

 Conjugate prior for the Multinomial. 

 The Dirichlet distribution over K variables 

is confined to a K-1 dimensional simplex. 
8 

B. Leibe Image source: C. Bishop, 2006 

E[¹k] =
®k

®0

var[¹k] =
®k(®0 ¡ ®k)

®20(®0 + 1)

cov[¹j¹k] = ¡ ®j®k

®20(®0 + 1)

with 

Slide adapted from C. Bishop 
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

Recap: The Gaussian Distribution 

9 
B. Leibe 

N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp
½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006 
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Recap: Bayes’ Theorem for Gaussian Variables 

• Marginal and Conditional Gaussians 

 Suppose we are given a Gaussian prior p(x) and a Gaussian 

conditional distribution p(y|x) (a linear Gaussian model) 

 

 

 

 From this, we can compute  

 

 

 

where 

 
 

 Closed-form solution for (Gaussian) marginal and posterior. 

10 
B. Leibe Slide adapted from C. Bishop 
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Recap: Bayesian Inference for the Gaussian 

• Univariate conjugate priors 

 ¾2 known, ¹ unknown:  p(¹) Gaussian 

 

 

 
 

 ¹ is known, ¸ unknown: p(¸) Gamma 

 

 

 
 

 both ¹ and ¸ unknown:  p(¹,¸) Gaussian-Gamma 

 

 

 
11 
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Recap: The Gamma Distribution 

• Gamma distribution 

 Product of a power of ¸ and the exponential of a linear function 

of ¸. 

 

 

• Properties 

 Finite integral if a>0 and the distribution itself is finite if a¸1. 
 

 Moments 
 

 Conjugate prior for a Gaussian with known ¹ and unknown ¸. 

12 
B. Leibe Image source: C.M. Bishop, 2006 Slide adapted from C. Bishop 
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Recap: The Gaussian-Gamma Distribution 

• Gaussian-Gamma distribution 

 

 

 

 

 

 

• Properties 

 Conjugate prior for a univariate 

Gaussian where both ¹ and ¸ are  

unknown. 

13 
B. Leibe 

• Quadratic in ¹. 

• Linear in ¸. 

• Gamma distribution over ¸. 

• Independent of ¹.  

Image source: C.M. Bishop, 2006 Slide adapted from C. Bishop 
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Recap: Bayesian Inference for the Gaussian 

• Multivariate conjugate priors 

 ¹ unknown, ¤ known:  p(¹) Gaussian. 

 

 ¤ unknown, ¹ known:  p(¤) Wishart, 

 

 

 

 ¤ and ¹ unknown:  p(¹,¤) Gaussian-Wishart, 

 

 

14 
B. Leibe Slide adapted from C. Bishop 
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Student’s t-Distribution 

• Gaussian estimation 

 The conjugate prior for the precision of a Gaussian is a Gamma 

distribution. 

 Suppose we have a univariate Gaussian N(x|¹,¿ -1) together 

with a Gamma prior Gam(¿|a,b). 

 By integrating out the precision, obtain the marginal distribution 

 

 

 

 

 

 This corresponds to an infinite mixture of Gaussians having the 

same mean, but different precision. 

 

15 
B. Leibe Slide adapted from C. Bishop 
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Student’s t-Distribution 

16 
B. Leibe Slide adapted from C. Bishop 

• Student’s t-Distribution 

 We reparametrize the infinite mixture of Gaussians to get 

 

 

 

 
 

• Parameters 

 “Precision” 

 “Degrees of freedom” 
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Student’s t-Distribution: Visualization 

 

 

 

 

 

 

 

 

 

• Behavior 

17 
B. Leibe Slide adapted from C. Bishop Image source: C.M. Bishop, 2006 

Longer-tailed 

distribution! 

 More robust 

to outliers… 
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Student’s t-Distribution 

• Robustness to outliers: Gaussian vs t-distribution. 

 

 

 

 

 

 

 

 
 

 The t-distribution is much less sensitive to outliers, can be used 

for robust regression. 

 Downside: ML solution for t-distribution requires EM algorithm. 

 
18 

B. Leibe Slide adapted from C. Bishop Image source: C.M. Bishop, 2006 
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Student’s t-Distribution: Multivariate Case 

• Multivariate case in D dimensions 

 

 

 

 

 

where                                           is the Mahalanobis distance.  

 

• Properties 

19 
B. Leibe Slide credit: C. Bishop 
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Topics of This Lecture 

• Approximate Inference 

 Variational methods 

 Sampling approaches 
 

 

• Sampling approaches 
 Sampling from a distribution 

 Ancestral Sampling 

 Rejection Sampling 

 Importance Sampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 

20 
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Approximate Inference 

• Exact Bayesian inference is often intractable. 

 Often infeasible to evaluate the posterior distribution or to 

compute expectations w.r.t. the distribution. 

– E.g. because the dimensionality of the latent space is too high. 

– Or because the posterior distribution has a too complex form. 
 

 Problems with continuous variables 

– Required integrations may not have closed-form solutions. 
 

 Problems with discrete variables 

– Marginalization involves summing over all possible configurations of 

the hidden variables. 

– There may be exponentially many such states. 
 

 We need to resort to approximation schemes. 

21 
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Two Classes of Approximation Schemes 

• Deterministic approximations (Variational methods) 

 Based on analytical approximations to the posterior distribution 

– E.g. by assuming that it factorizes in a certain form 

– Or that it has a certain parametric form (e.g. a Gaussian). 

 Can never generate exact results, but are often scalable to large 

applications. 
 

• Stochastic approximations (Sampling methods) 

 Given infinite computationally resources, they can generate 

exact results. 

 Approximation arises from the use of a finite amount of 

processor time. 

 Enable the use of Bayesian techniques across many domains. 

 But: computationally demanding, often limited to small-scale 

problems. 

22 
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Topics of This Lecture 

• Approximate Inference 

 Variational methods 

 Sampling approaches 
 

 

• Sampling approaches 
 Sampling from a distribution 

 Ancestral Sampling 

 Rejection Sampling 

 Importance Sampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 

23 
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Sampling Idea 

• Objective:  

 Evaluate expectation of a function f(z)  

w.r.t. a probability distribution p(z). 

 

 

• Sampling idea 

 Draw L independent samples z(l) with l = 1,…,L from p(z). 

 This allows the expectation to be approximated by a finite sum 

 

 
 

 As long as the samples z(l) are drawn independently from p(z), 
then 
 

 Unbiased estimate, independent of the dimension of z! 
24 

B. Leibe Slide adapted from Bernt Schiele 

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Sampling – Challenges 

• Problem 1: Samples might not be independent 

 Effective sample size might be much smaller than apparent 

sample size. 

 

 

 

 

 

• Problem 2:  

 If f(z) is small in regions where p(z) is large and vice versa, the 

expectation may be dominated by regions of small probability. 

 Large sample sizes necessary to achieve sufficient accuracy. 

25 
B. Leibe Image source: C.M. Bishop, 2006 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Parametric Density Model 

• Example:  

 A simple multivariate (d-dimensional) Gaussian model 

 

 

 

 

 This is a “generative” model 

in the sense that we can generate 

samples x according to the  

distribution. 

26 
B. Leibe Slide adapted from Bernt Schiele 

p(xj¹;§) =
1

(2¼)D=2j§j1=2 exp
½
¡1

2
(x¡¹)T§¡1(x¡¹)
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Sampling from a Gaussian 

• Given: 1-dim. Gaussian pdf (probability density function) 
p(x|¹,¾2) and the corresponding cumulative distribution: 

 

 

• To draw samples from a Gaussian, we can invert the 

cumulative distribution function: 

 

 

27 
B. Leibe 

F¹;¾2(x) =

Z x

¡1
p(xj¹; ¾2)dx

u » Uniform(0; 1)) F¡1
¹;¾2

(u) » p(xj¹;¾2)

F¹;¾2(x)p(xj¹; ¾2)

Slide credit: Bernt Schiele 
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Sampling from a pdf (Transformation method) 

• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution: 

 

 

• To draw samples from this pdf, we can invert the 

cumulative distribution function: 
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F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Example 1: Sampling from Exponential Distrib. 

• Exponential Distribution 

 

 

where 0 · y < 1. 

 

 

• Transformation sampling 

 Indefinite Integral 
 

 Inverse function 

 
 

 for a uniformly distributed input variable z. 

 

29 
B. Leibe Image source: Wikipedia 
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Example 2: Sampling from Cauchy Distrib. 

• Cauchy Distribution 

 

 

 

 

 

 

• Transformation sampling 

 Inverse of integral can be expressed as a tan function. 

 

 

 for a uniformly distributed input variable z. 

 

30 
B. Leibe Image source: Wikipedia 
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Note: Efficient Sampling from a Gaussian 

• Problem with transformation method 

 Integral over Gaussian cannot be expressed 

in analytical form. 

 Standard transformation approach is very 

inefficient. 

 

• More efficient: Box-Muller Algorithm 

 Generate pairs of uniformly distributed random numbers  

z1,z2 2 (-1,1). 

 Discard each pair unless it satisfies                             .  

 This leads to a uniform distribution of points inside the unit 

circle with p(z1,z2) = 1/¼. 
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Box-Muller Algorithm (cont’d) 

• Box-Muller Algorithm (cont’d) 

 For each pair z1,z2  evaluate 

 

 

 
 

 Then the joint distribution of y1 and y2 is given by  

 

 

 

 

 

 y1 and y2 are independent and each has a Gaussian distribution  

with mean ¹ and variance ¾2. 

 If y ~ N(0,1), then ¾y + ¹ ~ N(¹,¾2). 
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Box-Muller Algorithm (cont’d) 

• Multivariate extension 

 If z is a vector valued random variable whose components are 

independent and Gaussian distributed with N(0,1), 

 Then y = ¹ + Lz will have mean ¹ and covariance §. 

 Where § = LLT is the Cholesky decomposition of §. 
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Ancestral Sampling 

• Generalization of this idea to directed graphical models. 

 Joint probability factorizes into conditional probabilities: 

 

 
 

• Ancestral sampling 

 Assume the variables are ordered such that there are no links 

from any node to a lower-numbered node. 

 Start with lowest-numbered node and draw a sample from its 

distribution. 
 

 Cycle through each of the nodes in order and draw samples from 

the conditional distribution (where the parent variable is set to 

its sampled value). 
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x̂1 » p(x1)

x̂n » p(xnjpan)

Image source: C.M. Bishop, 2006 
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Logic Sampling 

• Extension of Ancestral sampling 

 Directed graph where some nodes are instantiated  

with observed values. 

 

• Use ancestral sampling, except 

 When sample is obtained for an observed variable, if they agree 

then sample value is retained and proceed to next variable. 

 If they don’t agree, whole sample is discarded. 
 

• Result 

 Approach samples correctly from the posterior distribution. 

 However, probability of accepting a sample decreases rapidly as 

the number of observed variables increases. 

 Approach is rarely used in practice. 
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Discussion 

• Transformation method 

 Limited applicability, as we need to invert the indefinite integral 

of the required distribution p(z). 

 This will only be feasible for a limited number of simple 

distributions. 

 

• More general 

 Rejection Sampling 

 Importance Sampling 

36 
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Rejection Sampling 

• Assumptions 

 Sampling directly from p(z) is difficult. 

 But we can easily evaluate p(z) (up to some normalization factor 

Zp): 

 

• Idea 

 We need some simpler distribution q(z) (called proposal 

distribution) from which we can draw samples. 

 Choose a constant k such that:  
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p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Rejection Sampling 

• Sampling procedure 

 Generate a number z0 from q(z). 

 Generate a number u0 from the 

uniform distribution over [0,kq(z0)]. 

 If                    reject sample, otherwise accept. 

– Sample is rejected if it lies in the grey shaded area. 

– The remaining pairs (u0,z0) have uniform distribution under the 

curve         . 
 

• Discussion 

 Original values of z are generated from the distribution q(z). 

 Samples are accepted with probability 

 

 

 k should be as small as possible! 
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u0 > ~p(z0)

~p(z)

~p(z)=kq(z)

Image source: C.M. Bishop, 2006 
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p(accept) ·
1

20000

Rejection Sampling – Discussion 

• Limitation: high-dimensional spaces 

 For rejection sampling to be of practical value, we require that 

kq(z) be close to the required distribution, so that the rate of 

rejection is minimal. 
 

• Artificial example 

 Assume that p(z) is Gaussian with covariance matrix  

 Assume that q(z) is Gaussian with covariance matrix  

 Obviously:  

 In D dimensions: k = (¾q/¾p)
D. 

– Assume ¾q is just 1% larger than ¾p. 

– D = 1000  k = 1.011000 ¸ 20,000 

– And 
 

 Often impractical to find good proposal distributions for high 

dimensions! 
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¾2pI

¾2qI

¾2q ¸ ¾2p

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 
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Example: Sampling from a Gamma Distrib. 

• Gamma distribution 

 

 
 

• Rejection sampling approach 

 For a>1, Gamma distribution has a  

bell-shaped form. 

 Suitable proposal distribution is 

Cauchy (for which we can use 

the transformation method). 

 Generalize Cauchy slightly to ensure  

it is nowhere smaller than Gamma: y = b tan y + c for uniform y. 

 This gives random numbers distributed according to  
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with optimal 

rejection rate for 
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Importance Sampling 

• Approach 

 Approximate expectations directly 

(but does not enable to draw samples from p(z) directly). 

 Goal: 

 

• Simplistic strategy: Grid sampling 

 Discretize z-space into a uniform grid. 

 Evaluate the integrand as a sum of the form 

 

 
 

 But: number of terms grows exponentially with number of 

dimensions! 
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Importance Sampling 

• Idea 

 Use a proposal distribution q(z) from which it is easy to draw 

samples. 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

 

 

 

 

 

 with importance weights 

 

42 
B. Leibe Slide credit: Bernt Schiele 

rl =
p(z(l))

q(z(l))
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Importance Sampling 

• Typical setting: 

 p(z) can only be evaluated up to an unknown normalization 

constant 
 

 q(z) can also be treated in a similar fashion. 

 
 

 Then 

 

 

 

 

 
 with: 
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p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
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Importance Sampling 

• Ratio of normalization constants can be evaluated 

 

 
 

• and therefore 

 

 

 

• with 
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Zp

Zq

=
1

Zq

Z
~p(z)dz =

Z
~p(z(l))

~q(z(l))
q(z)dz ' 1

L

LX

l=1

~rl

wl =
~rlP
m ~rm

=

~p(z(l))

~q(z(l))P
m

~p(z(m))

~q(z(m))



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
2

 

Importance Sampling – Discussion 

• Observations 

 Success of importance sampling depends crucially on how well 

the sampling distribution q(z) matches the desired distribution 

p(z). 

 Often, p(z)f(z) is strongly varying and has a significant propor-

tion of its mass concentrated over small regions of z-space. 

 Weights rl may be dominated by a few weights having large 

values. 
 

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large… 

– The results may be arbitrary in error. 

– And there will be no diagnostic indication (no large variance in rl)! 
 

 Key requirement for sampling distribution q(z): 

– Should not be small or zero in regions where p(z) is significant! 
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Topics of This Lecture 

• Approximate Inference 

 Variational methods 

 Sampling approaches 
 

 

• Sampling approaches 
 Sampling from a distribution 

 Ancestral Sampling 

 Rejection Sampling 

 Importance Sampling 
 

• Markov Chain Monte Carlo 
 Markov Chains 

 Metropolis Algorithm 

 Metropolis-Hastings Algorithm 

 Gibbs Sampling 
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Independent Sampling vs. Markov Chains 

• So far  

 We’ve considered two methods, Rejection Sampling and 

Importance Sampling, which were both based on independent 

samples from q(z).  

 However, for many problems of practical interest, it is difficult 

or impossible to find q(z) with the necessary properties. 

 

• Different approach 

 We abandon the idea of independent sampling. 

 Instead, rely on a Markov Chain to generate dependent samples 

from the target distribution. 

 Independence would be a nice thing, but it is not necessary for 

the Monte Carlo estimate to be valid. 
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p(z) =
~p(z)

Zp

• Overview 

 Allows to sample from a large class of distributions. 

 Scales well with the dimensionality of the sample space. 
 

• Idea 

 We maintain a record of the current state z(¿)  

 The proposal distribution depends on the current state: q(z|z(¿))  

 The sequence of samples forms a Markov chain z(1), z(2),… 
 

• Setting 

 We can evaluate p(z) (up to some normalizing factor Zp):  

 
 

 At each time step, we generate a candidate sample from the 

proposal distribution and accept the sample according to a 

criterion. 

MCMC – Markov Chain Monte Carlo 
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MCMC – Metropolis Algorithm 

• Metropolis algorithm        [Metropolis et al., 1953] 

 Proposal distribution is symmetric:  

 The new candidate sample z* is accepted with probability 

 

 
 

• Implementation 

 Choose random number u uniformly from unit interval (0,1). 

 Accept sample if                        . 
 

• Note 

 New candidate samples always accepted if                        . 

– I.e. when new sample has higher probability than the previous one. 

 The algorithm sometimes accepts a state with lower probability. 
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q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

A(z?;z(¿)) > u

~p(z?) ¸ ~p(z(¿))

Slide credit: Bernt Schiele 
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MCMC – Metropolis Algorithm 

• Two cases 

 If new sample is accepted: 

 Otherwise:  

 

 This is in contrast to rejection sampling, where rejected samples 

are simply discarded. 

 Leads to multiple copies of the same sample! 
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z(¿+1) = z?

z(¿+1) = z(¿)

Slide credit: Bernt Schiele 
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MCMC – Metropolis Algorithm 

• Property 

 When q(zA|zB) > 0 for all z, the distribution of z¿ tends to p(z) 

as ¿ ! 1. 
 

• Note 

 Sequence z(1), z(2),… is not a set of independent samples from 

p(z), as successive samples are highly correlated. 

 We can obtain (largely) independent samples by just retaining 

every Mth sample. 
 

• Example: Sampling from a Gaussian 

 Proposal: Gaussian with ¾ = 0.2. 

 Green:  accepted samples 

 Red: rejected samples 
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Markov Chains 

• Question 

 How can we show that z¿ tends to p(z) as ¿ ! 1? 

 

• Markov chains 

 First-order Markov chain: 

 

 

 Marginal probability 
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Slide credit: Bernt Schiele 
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Markov Chains – Properties 

• Invariant distribution 

 A distribution is said to be invariant (or stationary) w.r.t. a 

Markov chain if each step in the chain leaves that distribution 

invariant. 

 Transition probabilities: 

 
 

 Distribution p*(z) is invariant if: 

 

 

• Detailed balance 

 Sufficient (but not necessary) condition to ensure that a 

distribution is invariant: 

 

 A Markov chain which respects detailed balance is reversible. 
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T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele 
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Ergodicity in Markov Chains 

• Remark 

 Our goal is to use Markov chains to sample from a given 

distribution. 

 We can achieve this if we set up a Markov chain such that the 

desired distribution is invariant. 

 However, must also require that for m !1, the distribution 

p(z(m)) converges to the required invariant distribution p*(z) 

irrespective of the choice of initial distribution p(z(0)). (This 

property is called ergodicity). 

 It can be shown that this is the case for a homogeneous Markov 

chain (i.e., a Markov chain for which the transition probabilities 

are the same for all m). 
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MCMC – Metropolis-Hastings Algorithm 

• Metropolis-Hastings Algorithm 

 Generalization: Proposal distribution not required to be 

symmetric. 

 The new candidate sample z* is accepted with probability 

 

 
 

 where k labels the members of the set of possible transitions 

considered. 

 

• Note 

 When the proposal distributions are symmetric, Metropolis-

Hastings reduces to the standard Metropolis algorithm. 

55 
B. Leibe Slide credit: Bernt Schiele 

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))
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MCMC – Metropolis-Hastings Algorithm 

• Properties 

 We can show that p(z) is an invariant distribution of the Markov 

chain defined by the Metropolis-Hastings algorithm. 

 We show detailed balance: 
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p(z)qk(zjz0)Ak(z
0;z) = minfp(z)qk(zjz0); p(z0)qk(z0jz)g

= minfp(z0)qk(z0jz); p(z)qk(zjz0)g

= p(z0)qk(z
0jz)Ak(z;z0)
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MCMC – Metropolis-Hastings Algorithm 

• Schematic illustration 

 For continuous state spaces, a common  

choice of proposal distribution is a  

Gaussian centered on the current state. 

 What should be the variance of the 

proposal distribution? 

– Large variance: rejection rate will be high for complex problems. 

– The scale ½ of the proposal distribution should be as large as 

possible without incurring high rejection rates. 

 ½ should be of the same order as the smallest length scale ¾min. 
 

 This causes the system to explore the distribution by means of a 

random walk. 

– Undesired behavior: number of steps to arrive at state that is 

independent of original state is of order (¾max/¾min)
2. 

– Strong correlations can slow down the Metropolis algorithm! 
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Gibbs Sampling 

• Approach 

 MCMC-algorithm that is simple and widely applicable. 

 May be seen as a special case of Metropolis-Hastings. 
 

• Idea 

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i). 

– This means we update one coordinate at a time. 

 Repeat procedure either by cycling through all variables or by 

choosing the next variable. 
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Gibbs Sampling 

• Example 

 Assume distribution p(z1, z2, z3). 

 Replace       with new value drawn from  
 

 Replace       with new value drawn from  
 

 Replace       with new value drawn from  

 And so on… 
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Gibbs Sampling 

• Properties 

 The factor that determines the acceptance probability in the 

Metropolis-Hastings is determined by 

 

 
 

 I.e. we get an algorithm which always accepts! 

 

 If you can compute (and sample from) the conditionals, you can 

apply Gibbs sampling. 

 The algorithm is completely parameter free. 

 Can also be applied to subsets of variables. 
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A(z?; z) =
p(z?)qk(zjz?)
p(z)qk(z?jz)

=
p(z?kjz?nk)p(z?nk)p(z?kjz?nk)
p(zkjznk)p(znk)p(zkjznk)

= 1

Slide credit: Zoubin Ghahramani 
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Gibbs Sampling 

• Example 

 20 iterations of Gibbs sampling on a bivariate Gaussian. 

 

 

 

 

 

 

 

 

 

 

 Note: strong correlations can slow down Gibbs sampling. 
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Summary: Approximate Inference 

• Exact Bayesian Inference often intractable. 
 

• Rejection and Importance Sampling 

 Generate independent samples. 

 Impractical in high-dimensional state spaces. 
 

• Markov Chain Monte Carlo (MCMC) 

 Simple & effective (even though typically computationally 

expensive). 

 Scales well with the dimensionality of the state space. 

 Issues of convergence have to be considered carefully. 
 

• Gibbs Sampling 

 Used extensively in practice. 

 Parameter free 

 Requires sampling conditional distributions. 
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References and Further Reading 

• Sampling methods for approximate inference are 

described in detail in Chapter 11 of Bishop’s book. 

 

 

 

 

 

 
 

• Another good introduction to Monte Carlo methods can 

be found in Chapter 29 of MacKay’s book (also available 

online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html) 
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