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RWTH
This Lecture: Advanced Machine Learning

o Regression Approaches f X —- R
» Linear Regression 1 1 v | e
. Regularization (Ridge, Lasso) \
> Kernels (Kernel Ridge Regression)

> @Gaussian Processes

e Bayesian Estimation & Bayesian Non-Parametrics
> Prob. Distributions, Approx. Inference (= __ ) ;

e
S

Y
N

. Mixture Models & EM T OO
> Dirichlet Processes Xn : M

~ Latent Factor Models W
> Beta Processes

e SVMs and Structured Output Learning
~ SV Regression, SVDD f : X — y

> Large-margin Learning
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RWTH
Correction: Bayesian Model Selection

e Discussion
> Marginal likelihood is main difference to non-Bayesian methods

p(t1 X, Hy) — / p(b1X, 0, H:)p(6|H:)d6

o ~ It automatically incorporates a trade-off

5 between the model fit and the model

= complexity: .

= . — == simple
> - A simple model can only account =" intermediate
g for a limited range of possible = =~ Complex
e sets of target values - if a simple =

o model fits well, it obtains a high 3

= marginal likelihood. %

& - A complex model can account for 3 !

E a large range of possible sets of S b

Q target values - therefore, it can £ -~ ]

S never attain a very high marginal heee -

2 likelihood. all possible data sets

. 3
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006




Recap: Binary Variables

e Bernoulli distribution
» Probability distribution over x € {0,1}:

Bern(z|p) = po(1—p)'™?
Elz] = p
varlz] = p(l—p)

B3 F——

e Binomial distribution
- Generalization for m outcomes out of N trials |

Bin(m|N, ) = (Z ) (L= N

Bin(m|10,0.25)

0.1}

0O 1 2 3 4 5 6 7 8 9 10
m

E[m] = Z mBin(m|N,u) = Npu

m=0

var[m| = Z (m — E[m])* Bin(m/|N, u) = Nu(1 — p)

B. Leibe
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Recap: The Beta Distribution

e Beta distribution
» Distribution over u € [0,1]:

F(CL T b) a—1

Beta(ula,b) = mrsra (1—p)!

Ely] = —

a-+b IE
var(u] = ab
M= G2 atbrl) 0

- where I'(x) is the gamma function, a continuous generalization
of the factorial. (I'(xz 4 1) = «! iff = is an integer).

e Properties

> The Beta distribution generalizes the Binomial to arbitrary
values of a and b, while keeping the same functional form.
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» It is therefore a conjugate prior for the Bernoulli and Binomial.

B. Leibe




Multinomial Variables

e Multinomial variables
» Variables that can take one of K possible distinct states
. Convenient: 1-of-K coding scheme: x = (0,0,1,0,0,0)"

e Generalization of the Bernoulli distribution
> Distribution of x with K outcomes

p(x|p) = Hu

with the constraints

K
Vk:ur, >0 and Zukzl
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Recap: Multinomial Variables

e Multinomial Distribution
. Variables using 1-of-K coding scheme: x = (0,0,1,0,0,0)*
> Joint distribution over m ,...,m, conditioned on x and N

N K
Mult(mq,mo,...,mg|p, N) = ( ) Huz@k
mims...mg) o=
Elmg] = Npug
varimg| = Npe(l — p)
covimymg| = —Np;pk

with the constraints

K
Vk:ur, >0 and Zukzl
k=1
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RWNTH
Recap: The Dirichlet Distribution

e Dirichlet Distribution
> Multivariate generalization of the Beta distribution

M - ak_]. ° -
Dir(pler) = D(aq)---T(ak) kI:ll Hg with  ap = ;;:1: Q;

(097
Elpk] = o
ag (g — ag)
V&I‘[/Lk] — 04(2)(0504—1)
0 718%%
covlpipk] = " oZ(ap + 1)

e Properties
> Conjugate prior for the Multinomial.

~ The Dirichlet distribution over K variables
is confined to a K-1 dimensional simplex.

(9|
—
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

(0]

Image source: C. Bishop, 2006

Slide adapted from C. Bishop B. Leibe



RWNTH
Recap: The Gaussian Distribution

e One-dimensional case '
> Mean u

N(z|p,a?)

> Variance o2

Nalp.o?) = —=—exp {_ (2 —p)’ }

v

e Multi-dimensional case
> Mean u
> Covariance X
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RWTH
Recap: Bayes’ Theorem for Gaussian Variables

e Marginal and Conditional Gaussians

» Suppose we are given a Gaussian prior p(x) and a Gaussian
conditional distribution p(y|x) (a linear Gaussian model)

px) = N (xlp A7)
p(ylx) = N(y|Ax—|—b,L_1)

~ From this, we can compute
p(y) = N(ylAp+b L'+ AATAT)
p(xly) = NEZ{A'L(y —b)+ Au},X)

where
>=(A+A'LA)!

= Closed-form solution for (Gaussian) marginal and posterior.
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RWNTH
Recap: Bayesian Inference for the Gaussian

e Univariate conjugate priors
> o known, p unknown: p(u) Gaussian

1 1 &
p(X|p) = Bro?) N7z P {—@ > (wn - u)Q} -

> is known, A unknown: p()\) Gamma

p(X[1) o< A exp {% > (g — M)Q} -

n=1

> both 1 and A unknown: p(u,)\) Gaussian-Gamma

2\ 1Y N I
1/2 2
p(X|p, A) x [)\ /“exp (— T)] exp {)\;L nE:iL“n — 5 nE:1azn .

11
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Recap: The Gamma Distribution

e Gamma distribution
» Product of a power of \ and the exponential of a linear function

of ). .
Gam(\|a, b) = b AL exp(—bA
. (Aa:b) = oy p(—bA)
=4 * Properties
i -~ Finite integral if a>>0 and the distribution itself is finite if a>1.
£ . Moments E[A\] = 4 var[\] = a
o b b2
o > Conjugate prior for a Gaussian with known ¢ and unknown A\.
'E 2 ; 2 . o)
8 a=0.1 = 1 a =4
p— b=0.1 b=1 b=6
= 1} 1 1 1 1t
(8)
% \
% 0 1 — 0 ; 0 .
< 0 A1 2 0 A1 2 0 Al 2

12
Image source: C.M. Bishop, 2006
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RWNTH
Recap: The Gaussian-Gamma Distribution

e Gaussian-Gamma distribution
p(ps A) = N (plpo, (BA) ™) Gam(N|a, b)
o {2ty (o

(N J J
Y Y

e Quadratic in . + Gamma distribution over \.
* Linear in \. * Independent of L.

2

e Properties
> Conjugate prior for a univariate

Gaussian where both ;s and A are |
unknown.

-2 0 2

o
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RWNTH
Recap: Bayesian Inference for the Gaussian

e Multivariate conjugate priors
> wunknown, A known: p(u) Gaussian.

> A unknown, u known: p(A) Wishart,

W(A|W,v) = B|A|VP=D 2 exp (—%Tr(WlA)) .

> A and u unknown: p(u,A) Gaussian-Wishart,
p(ua A‘/’I’OJ /87 WJ V) — N(MHMO: (BA)_l) W(A‘W) V)

Slide adapted from C. Bishop B. Leibe
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Student’s t-Distribution

e Gaussian estimation

» The conjugate prior for the precision of a Gaussian is a Gamma
distribution.

. Suppose we have a univariate Gaussian NM(z | u,™ 1) together
with a Gamma prior Gam(7| a,b).

» By integrating out the precision, obtain the marginal distribution

p(x|p,a,b) = /OOON(w\u,T_l)Gam(T\a,b)d’r
= [ A (el (0 ) Gamnlal /2, v/2)

> This corresponds to an infinite mixture of Gaussians having the
same mean, but different precision.

(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

15

Slide adapted from C. Bishop B. Leibe



Student’s t-Distribution

e Student’s t-Distribution
- We reparametrize the infinite mixture of Gaussians to get

e Parameters
. “Precision” A=a/b
- “Degrees of freedom” v = 2a.
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Student’s t-Distribution: Visualization o

0.5

VvV — OO

Longer-tailed
distribution!

= More robust
to outliers...

e Behavior
| vr=1 vV — 0

St(a|u, A, v) | Cauchy N (|, A1)
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Student’s t-Distribution

e Robustness to outliers: Gaussian vs t-distribution.

0.5 - - 0.5

04r 04}

03} 03l
0.2} 0.2}

0.1} 0.1}

-5 0 5 10 -5 0 5 10

= The t-distribution is much less sensitive to outliers, can be used
for robust regression.

= Downside: ML solution for t-distribution requires EM algorithm.

18
Image source: C.M. Bishop, 2006
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RWNTH
Student’s t-Distribution: Multivariate Case

e Multivariate case in D dimensions
St(x|w, A,v) = / N (x|, (nA)~HGam(n|v/2,v/2) dn
0

I'(D/2+v/2) |A|Y/? {1 A_QI_D/Q_V/Q
['(v/2) CORE

vV

where A® = (x — u)' A(x — p) is the Mahalanobis distance.

e Properties

cov|x| = AL ifr>2

mode|x| = u
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Topics of This Lecture

e Approximate Inference
~ Variational methods
- Sampling approaches

e Sampling approaches
~ Sampling from a distribution
~ Ancestral Sampling
~ Rejection Sampling
> Importance Sampling

e Markov Chain Monte Carlo
> Markov Chains
» Metropolis Algorithm
> Metropolis-Hastings Algorithm
> Gibbs Sampling

B. Leibe

20
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Approximate Inference

e Exact Bayesian inference is often intractable.

» Often infeasible to evaluate the posterior distribution or to
compute expectations w.r.t. the distribution.
- E.g. because the dimensionality of the latent space is too high.
- Or because the posterior distribution has a too complex form.

> Problems with continuous variables
- Required integrations may not have closed-form solutions.

> Problems with discrete variables

- Marginalization involves summing over all possible configurations of
the hidden variables.

- There may be exponentially many such states.

= We need to resort to approximation schemes.

21
B. Leibe
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RWTH
Two Classes of Approximation Schemes

e Deterministic approximations (Variational methods)

- Based on analytical approximations to the posterior distribution
- E.g. by assuming that it factorizes in a certain form
- Or that it has a certain parametric form (e.g. a Gaussian).

= Can never generate exact results, but are often scalable to large
applications.

e Stochastic approximations (Sampling methods)

~ Given infinite computationally resources, they can generate
exact results.

> Approximation arises from the use of a finite amount of
processor time.

= Enable the use of Bayesian techniques across many domains.

= But: computationally demanding, often limited to small-scale
problems.

22
B. Leibe



Topics of This Lecture

e Sampling approaches
~ Sampling from a distribution
~ Ancestral Sampling
~ Rejection Sampling
> Importance Sampling

(9|
-
.
Q
i
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

23
B. Leibe



Sampling Idea

e Objective:
- Evaluate expectation of a function f(z) p(2)
w.r.t. a probability distribution p(z).

- [ t@pia)az

e Sampling idea -

- Draw L independent samples z!) with [ = 1,...,L from p(z).

f(z)

aY

> This allows the expectatlon to be approximated by a finite sum
L
1=1
- As long as the samples z() are drawn independently from p(z),
then Em = E[/]

= Unbiased estimate, independent of the dimension of z!
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Sampling - Challenges

e Problem 1: Samples might not be independent

= Effective sample size might be much smaller than apparent

sample size.
p(2) /)

e Problem 2: ® i

» If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.

= Large sample sizes necessary to achieve sufficient accuracy.
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Parametric Density Model

e Example:
> A simple multivariate (d-dimensional) Gaussian model

i D) = s enn { 5 TR - ) |

~ This is a “generative” model

in the sense that we can generate goo "¢
samples x according to the ° §€°¢, ’
distribution. . ogig"
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Sampling from a Gaussian

e Given: 1-dim. Gaussian pdf (probability density function)
p(x|u,0%) and the corresponding cumulative distribution:

Fuor(a) = [ plalp,o?)ds

— 0
e To draw samples from a Gaussian, we can invert the

cumulative distribution function:
u ~ Uniform(0,1) = Fu_;2 (u) ~ p(x|w, o?)

p(@|u, o) =
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RWTH
Sampling from a pdf (Transformation method)

e In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
F(x) = / p(z)dz

e To draw samples from this pdf, we can invert the
cumulative distribution function:

w ~ Uniform(0,1) = F~ 1 (u) ~ p(z)
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RWNTH
Example 1: Sampling from Exponential Distrib.

1.6

e Exponential Distribution W ——a=05 |

1.2} A=1 ]

A=15
p(y) = Aexp (—Ay) :;;:3:‘;\ |

0.6}

where 0 < y < . 0.4f
th_ ¥
0.0 . L L

0 1 2 3 4 3

e Transformation sampling
> Indefinite Integral h(y) — 1 —exp (_)\y)

> Inverse function
y = h(y)_1 — )1 In(1-—2)

for a uniformly distributed input variable z.
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Example 2: Sampling from Cauchy Distrib.

0.7

1 1 o By
p(y) o 7_'('1 —|—y2 IMA
0.2
R 0 2 4

e Transformation sampling
> Inverse of integral can be expressed as a tan function.

y = h(y)~" = tan (2)

for a uniformly distributed input variable z.

(9|
-
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

30

B. Leibe Image source: Wikipedia



(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

RWTH
Note: Efficient Sampling from a Gaussian

. . 1
e Problem with transformation method
> Integral over Gaussian cannot be expressed
in analytical form. ol
~ Standard transformation approach is very '
inefficient.
_1_ - - Zl .

* More efficient: Box-Muller Algorithm
~ Generate pairs of uniformly distributed random numbers
2,2, € (-1,1).
. Discard each pair unless it satisfies 2 = zf + z% <1.

~ This leads to a uniform distribution of points inside the unit
circle with p(z,,z,) = 1/m.

31

B. Leibe Image source: C.M. Bishop, 2006



(9|
-
.
Q
P
=
(@))
.E
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

Box-Muller Algorithm (cont’d)

e Box-Muller Algorithm (cont’d)

- For each pair z,z, evaluate

—2Inr? 1/2 —9Inr2\ 2
y1_21( 5 ) y2_2’2( 5 )
r r
> Then the joint distribution of y, and y, is given by
8(21, Zg)
P\WY1,Y2) = Plz1,22
v) = P (50 )
——exp(—48/2)| | = e(-13/2)
= exp(— exp(—

= y, and y, are independent and each has a Gaussian distribution
with mean u and variance o2.

. If y ~ N0,1), then oy + 1 ~ Mu,o0?).

B. Leibe
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Box-Muller Algorithm (cont’d)

e Multivariate extension

~ If z is a vector valued random variable whose components are
independent and Gaussian distributed with A/(0,1),

> Theny = u + Lz will have mean y and covariance 3..
- Where X = LL" is the Cholesky decomposition of X.
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Ancestral Sampling

e Generalization of this idea to directed graphical models.
- Joint probability factorizes into conditional probabilities: .

p(x) = | | plexpay,)

e Ancestral sampling

> Assume the variables are ordered such that there are no links
from any node to a lower-numbered node.

~ Start with lowest-numbered node and draw a sample from its
distribution. &1 ~ p(x1)

> Cycle through each of the nodes in order and draw samples from
the conditional distribution (where the parent variable is set to

its sampled value).
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Logic Sampling

e Extension of Ancestral sampling

» Directed graph where some nodes are instantiated
with observed values.

e Use ancestral sampling, except

> When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.

~ If they don’t agree, whole sample is discarded.

e Result

~ Approach samples correctly from the posterior distribution.

- However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.

= Approach is rarely used in practice.

35
B. Leibe
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Discussion

e Transformation method

» Limited applicability, as we need to invert the indefinite integral
of the required distribution p(z).

> This will only be feasible for a limited number of simple
distributions.

e More general
~ Rejection Sampling
> Importance Sampling

36

Slide adapted from Bernt Schiele B. Leibe



Rejection Sampling

e Assumptions
» Sampling directly from p(z) is difficult.
» But we can easily evaluate p(z) (up to some normalization factor

Z,): 1
g p(z) — Z—p(z)
e |ldea g

- We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.

- Choose a constant k such that: Vz : kq(z) > p(2)

kq(20) fig#)

20 VA
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Rejection Sampling
e Sampling procedure kq(z0) kq(2)
- Generate a number z, from g(z).

- Generate a number v, from the / A=)
uniform distribution over [0,kq(z,)]. --- .

Z0 z

- If ug > p(zy) reject sample, otherwise accept.
- Sample is rejected if it lies in the grey shaded area.
- The remaining pairs (u,,z,) have uniform distribution under the

curve p(z).
e Discussion
» Original values of z are generated from the distribution ¢(z).
. Samples are accepted with probability p(2)/kq(2)

p(accept) = / f;iz)q(z)dz = %/ﬁ(z)dz

= k should be as small as possible!
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Rejection Sampling - Discussion

e Limitation: high-dimensional spaces

~ For rejection sampling to be of practical value, we require that
kq(z) be close to the required distribution, so that the rate of
rejection is minimal.

e Artificial example
Assume that p(z) is Gaussian with covariance matrix ng

Y

Assume that ¢(z) is Gaussian with covariance matrix O'(?I

Y

. . 2 2 0.5
Obviously: o, > o,

Y

> In D dimensions: k = (0,/0,)". o
- Assume o is just 1% larger than o,. 0.5
- D=1000= £k = 1.0111000 > 20,000
- And p(accept) -

20000 e
= Often impractical to find good proposal distributions for high

dimensions! 19
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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RWTH
Example: Sampling from a Gamma Distrib.

e Gamma distribution

1
Gam(z|a,b) = ——b*2% ' exp(—bz) a> 1

['(a)

e Rejection sampling approach

0.15

> For a>1, Gamma distribution has a 0.1}
bell-shaped form. p(z)

~ Suitable proposal distribution is 0.05 |
Cauchy (for which we can use

the transformation method). 5

» Generalize Cauchy slightly to ensure .
it is nowhere smaller than Gamma: y = b tan y + ¢ for uniform .

> This gives random numbers distributed according to

k with optimal c = a—1
1+ (2 —c¢)?/b® rejectionratefor 2 _— 9, _ 1

q(z) =
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Importance Sampling

e Approach

~ Approximate expectations directly
(but does not enable to draw samples from p(z) directly).

St By - [ fap()ia

e Simplistic strategy: Grid sampling
» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form

E[f] =) f(z")p(z")dz
(=1

> But: number of terms grows exponentially with nhumber of
dimensions!

Slide credit: Bernt Schiele B. Leibe
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Importance Sampling

e Idea

» Use a proposal distribution ¢(z) from which it is easy to draw
samples.

» Express expectations in the form of a finite sum over samples
{zD} drawn from ¢(z).

Blf) = [ Sz = [ 7(2) 2 g(2) e

2
—
[~
i
N
=
— =
~h
TN
N/‘\
—

> with importance weights
p(z")
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Importance Sampling

e Typical setting:
> p(z) can only be evaluated up to an unknown normalization
constant p(z) _ ﬁ(z)/Zp
> @(z) can also be treated in a similar fashion.
q(z) = 4(z)/ 2,

= 7)p(z)dz é z@ 7)dz
Blf] = [ Sl =5 [ @5 @)
P =1
o B(EY)
> with: Tl:(j(z(l))

Slide credit: Bernt Schiele B. Leibe
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Importance Sampling

e Ratio of normalization constants can be evaluated
p(zY) 1 <
___/ dz_/ i20) (Z)dZZZ;”

e and therefore

L
~ Z wy f(z)
[=1

e with -~ p(zM)

I D))
N Frm p(z(™)
2em T Yo

Slide credit: Bernt Schiele B. Leibe
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RWTH
Importance Sampling - Discussion

e Observations

~ Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desired distribution
p(z).

- Often, p(z) f(z) is strongly varying and has a significant propor-
tion of its mass concentrated over small regions of z-space.

= Weights r, may be dominated by a few weights having large
values.

» Practical issue: if none of the samples falls in the regions where
p(z) f(z) is large...
- The results may be arbitrary in error.
- And there will be no diagnostic indication (no large variance in 7;)!

- Key requirement for sampling distribution ¢(z):

- Should not be small or zero in regions where p(z) is significant!

. 45
Slide credit: Bernt Schiele B. Leibe



Topics of This Lecture

e Markov Chain Monte Carlo
> Markov Chains
» Metropolis Algorithm
> Metropolis-Hastings Algorithm
> Gibbs Sampling
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RWTH
Independent Sampling vs. Markov Chains

e So far

» We’ve considered two methods, Rejection Sampling and
Importance Sampling, which were both based on independent
samples from ¢(z).

- However, for many problems of practical interest, it is difficult
or impossible to find ¢(z) with the necessary properties.

e Different approach
> We abandon the idea of independent sampling.

» Instead, rely on a Markov Chain to generate dependent samples
from the target distribution.

> Independence would be a nice thing, but it is not necessary for
the Monte Carlo estimate to be valid.
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RWNTH
MCMC - Markov Chain Monte Carlo

e Overview
~ Allows to sample from a large class of distributions.
~ Scales well with the dimensionality of the sample space.

e ldea
- We maintain a record of the current state z("
. The proposal distribution depends on the current state: ¢(z|z()
- The sequence of samples forms a Markov chain z(V, z@), ..

e Setting
- We can evaluate p(z) (up to some normalizing factor Z ):
p(z) = Pz)
Z

p
» At each time step, we generate a candidate sample from the
proposal distribution and accept the sample according to a
criterion.

Slide credit: Bernt Schiele B. Leibe
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MCMC - Metropolis Algorithm

e Metropolis algorithm [Metropolis et al., 1953]
. Proposal distribution is symmetric: ¢(za|zg) = q(zB|z4)
- The new candidate sample z’ is accepted with probability
(PN p(z*)
A(z*,2z'"’) = min (1, p~—(z(7))>
e Implementation
> Choose random number u uniformly from unit interval (0,1).
. Accept sample if A(z*,z(™) > w.

e Note
. New candidate samples always accepted if p(z*) > p(z(™).
- l.e. when new sample has higher probability than the previous one.
» The algorithm sometimes accepts a state with lower probability.
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MCMC - Metropolis Algorithm

e Two cases
. If new sample is accepted: z("tD = z*
. Otherwise: 7(TTL) — 5(7)

> This is in contrast to rejection sampling, where rejected samples
are simply discarded.

= Leads to multiple copies of the same sample!

. 50
Slide credit: Bernt Schiele B. Leibe



MCMC - Metropolis Algorithm

e Property

- When ¢(z 4|zg) > O for all z, the distribution of z™ tends to p(z)
as 7 — 00.

e Note

- Sequence z(1), z(2),... is not a set of independent samples from
p(z), as successive samples are highly correlated.

> We can obtain (largely) independent samples by just retaining
every Mth sample. ;

2.5

e Example: Sampling from a Gaussian
» Proposal: Gaussian with o = 0.2.

L5f

> Green: accepted samples
> Red: rejected samples

05F
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Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006




Markov Chains

e Question
» How can we show that z" tends to p(z) as 7 — o0?

e Markov chains
> First-order Markov chain:

P (Z<m+1> PON 7z<m>) —p (Z<m+1> |z<m>)

~ Marginal probability

P (z<m+1>) -3 p (Z<m+1> yz<m>) P (z<m>>

z(m)
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Markov Chains - Properties

e |nvariant distribution

> A distribution is said to be invariant (or stationary) w.r.t. a
Markov chain if each step in the chain leaves that distribution
invariant.

~ Transition probabilities:
T (z<m>, Z<m+1>) —p (Z<m+1> |z<m>)
. Distribution p’(z) is invariant if:

p*(z) =) T(z,2)p"(2)

e Detailed balance

» Sufficient (but not necessary) condition to ensure that a
distribution is invariant:

p*(2)T (2,2") = p*(z)T (2, 2)
> A Markov chain which respects detailed balance is reversible.

Slide credit: Bernt Schiele B. Leibe
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Ergodicity in Markov Chains

e Remark

> Our goal is to use Markov chains to sample from a given
distribution.

> We can achieve this if we set up a Markov chain such that the
desired distribution is invariant.

- However, must also require that for m — oo, the distribution
p(z™) converges to the required invariant distribution p*(z)
irrespective of the choice of initial distribution p(z(?). (This
property is called ergodicity).

> It can be shown that this is the case for a homogeneous Markov

chain (i.e., a Markov chain for which the transition probabilities
are the same for all m).

54
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RWTH
MCMC - Metropolis-Hastings Algorithm

e Metropolis-Hastings Algorithm

~ Generalization: Proposal distribution not required to be
symmetric.

- The new candidate sample z" is accepted with probability

A(z*,2™) = min (1, ?(Z*Mk(Z(T)lZ*) )
p(2zM)qr(z*|2(7)

> where k labels the members of the set of possible transitions
considered.

e Note

> When the proposal distributions are symmetric, Metropolis-
Hastings reduces to the standard Metropolis algorithm.
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MCMC - Metropolis-Hastings Algorithm

e Properties

» We can show that p(z) is an invariant distribution of the Markov
chain defined by the Metropolis-Hastings algorithm.

> We show detailed balance:

p(z)qk(zlz) A(2', 2)

Slide credit: Bernt Schiele

min {p(z)qx(z|z'), p(z')qr(2'|2) }
min {p(z")qx(2'|2), p(2)qr(z|2") }

p(z')qr(2'|2) Ar (2, 2)

B. Leibe
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RWTH
MCMC - Metropolis-Hastings Algorithm

e Schematic illustration

~ For continuous state spaces, a common Vg
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the ami:x
proposal distribution?
- Large variance: rejection rate will be high for complex problems.

- The scale p of the proposal distribution should be as large as
possible without incurring high rejection rates.

= p should be of the same order as the smallest length scale o ;..

» This causes the system to explore the distribution by means of a
random walk.

- Undesired behavior: number of steps to arrive at state that is
independent of original state is of order (o,.,/ 0

max mm)z'
- Strong correlations can slow down the Metropolis algorithm!
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Gibbs Sampling

e Approach
- MCMC-algorithm that is simple and widely applicable.
~ May be seen as a special case of Metropolis-Hastings.

e ldea
- Sample variable-wise: replace z; by a value drawn from the
distribution p(z;| z\;).
- This means we update one coordinate at a time.

- Repeat procedure either by cycling through all variables or by
choosing the next variable.

Slide credit: Bernt Schiele B. Leibe
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Gibbs Sampling

e Example

- Assume distribution p(z,, z,, 2,).
. Replace 2" with new value drawn from 2"t ~ p(z|2{7, {7

- Replace zéT) with new value drawn from zéTH) ~ p(22 zYH), Z:(J,T))

- Replace zéT) with new value drawn from z§T+1) ~ p(z3 ng+1)7 Z§T+1))
> And so on...
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Gibbs Sampling

e Properties

~ The factor that determines the acceptance probability in the
Metropolis-Hastings is determined by

*

p(z")qr(z|z*) p(z; |23, )p(23 ) (25| 23

Az, 2) = p(z)ar(z*|z)  p(zk|zyk)p(2\k)P(2k| 2\ 1)

=1

l.e. we get an algorithm which always accepts!

Y

If you can compute (and sample from) the conditionals, you can
apply Gibbs sampling.

The algorithm is completely parameter free.

Can also be applied to subsets of variables.

Y

Y

Y
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Slide credit: Zoubin Ghahramani B. Leibe
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Gibbs Sampling

e Example
~ 20 iterations of Gibbs sampling on a bivariate Gaussian.

> Note: strong correlations can slow down Gibbs sampling.
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Summary: Approximate Inference

e Exact Bayesian Inference often intractable.

e Rejection and Importance Sampling
~ Generate independent samples.
> Impractical in high-dimensional state spaces.

e Markov Chain Monte Carlo (MCMC)

» Simple & effective (even though typically computationally
expensive).

~ Scales well with the dimensionality of the state space.
~ Issues of convergence have to be considered carefully.

e Gibbs Sampling
» Used extensively in practice.
~ Parameter free

> Requires sampling conditional distributions.
B. Leibe
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RWNTH
References and Further Reading

e Sampling methods for approximate inference are
described in detail in Chapter 11 of Bishop’s book.

avi ¢ maocy Christopher M. P!ShOP . . & PATTERN RECOGNITION &
Pattern Recognition and Machine Learning ZPSNEINAF G
Information Theory, Inference, ; g CHRISTOPHER M. BISHOP E3
and Learning Algorithms Springer, 2006 & CH R M. BISHOP F§
" - David MacKay
, Information Theory, Inference, and Learning Algorithms
van L

Cambridge University Press, 2003

e Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available
online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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