Computer Vision — Lecture 13

Deep Learning IV

18.06.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/
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Course Outline

* Image Processing Basics
* Segmentation & Grouping

* Object Recognition & Categorization
> Sliding Window based Object Detection

* Local Features & Matching

* Deep Learning
> Convolutional Neural Networks (CNNSs)
> Deep Learning Background
> CNNSs for Object Detection
> CNNSs for Semantic Segmentation
> CNNSs for Matching

3D Reconstruction
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Recap: R-CNN for Object Detection

ConvNet

ConvNet

ConvNet
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Slide credit: Ross Girshick B. Leibe
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Recap: Faster R-CNN

* One network, four losses

> Remove dependence on
external region proposal

algorithm.

Classificati
loss

Classification
loss

Bounding-box
regression loss

> Instead, infer region
proposals from same

CNN.

> Feature sharing

> Joint training

= Object detection in
a single pass becomes

possible.

N

f
proposas/ YA/

Region Proposal Network

feature map

Bounding-box
regression loss

A

Rol pooling

Slide credit: Ross Girshick
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Recap: Mask R-CNN

Classification Scores: C
Box coordinates (per class). 4 * C

AN

/j )
|1
//// /
A —_— —_—
//"/ - Conv Conv
171 ©/" Rol Align
V%
256 x14x14 256x14x 14 Predict a mask for

each of C classes

Cx14x 14

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.
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Slide credit: FeiFei Li


https://arxiv.org/pdf/1703.06870.pdf
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Recap: YOLO / SSD

Input image Divide image into grid
3XHXxW 7x7

* |dea: Directly go from image to detection scores

* Within each grid cell
> Start from a set of anchor boxes
> Regress from each of the B anchor boxes to a final box
> Predict scores for each of C classes (including background)
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Slide credit: FeiFei Li



Topics of This Lecture

* Practical Advice on CNN training
> Data Augmentation
> Initialization
> Batch Normalization
> Dropout
> Learning Rate Schedules

* CNNs for Segmentation
> Fully Convolutional Networks (FCN)
> Encoder-Decoder architecture
> Transpose convolutions
> Skip connections

* CNNs for Human Body Pose Estimation
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Data Augmentation

* |dea

> Augment original data with synthetic variations
to reduce overfitting

* Example augmentations for images

o unﬁunm
. Zooming = I E ™™
M &
 Golor o ™M

B. Leibe

> Flipping
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Image source: Lucas Beyer
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Data Augmentation

 Effect

> Much larger training set

> Robustness against expected
variations

W P

¥ I T
cd b ded,

* During testing
> When cropping was used
during training, need to

(0))
:q:) again apply crops to get ) R , _ b
| e MM
a > Beneficial to also apply S | .
| e PN W
= > Applying several ColorPCA . ' o 1 -
£ variations can bring another Augmented training data
3 ~1% improvement, but at a (from one original image)
3 significantly increased runtime.

B. Leibe >

Image source: Lucas Beyer
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Glorot Initialization

 Variance of neuron activations

>

Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

We want the variance of the input and output of a unit to be the
same, therefore n Var(W,) should be 1. This means

1 1
Var(W.) = — =
ar(W;) - _
Or for the backpropagated gradient
1
Var(W;) =
EI{ 1} Mout

As a compromise, Glorot & Bengio propose to use
2

i T Mot

Var(W) =

= Randomly sample the initial weights with this variance.

B. Leibe

[Glorot & Bengio, “10]
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RWTH
He Initialization [He et al., ‘15]

 Extension of Glorot Initialization to ReLU units
> Use Rectified Linear Units (ReLU)

g(a) = max{0,a}

> Effect: gradient is propagated with
a constant factor

dg(a) _ [ 1, a>0
da 0, else

e Same basic idea: Output should have the input variance

> However, the Glorot derivation was based on tanh units, linearity
assumption around zero does not hold for ReLU.

> He et al. made the derivations, proposed to use instead

, , 2
11
B. Leibe 1
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Practical Advice

* Initializing the weights
> Draw them randomly from a zero-mean distribution.
> Common choices in practice: Gaussian or uniform.

> Common trick: add a small positive bias (+¢) to avoid units with
RelLu nonlinearities getting stuck-at-zero.

* When sampling weights from a uniform distribution |a,b]
> Keep in mind that the standard deviation is computed as

1
2 _ N2
o 12(b a)

> Glorot initialization with uniform distribution

V6 V6

\/nin + Nout , \/nin + Nout

W~U|—

B. Leibe
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Batch Normalization [loffe & Szegedy '14]

* Motivation
> Optimization works best if all inputs of a layer are normalized.

* |dea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

> l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

> Complication: centering + normalization also needs to be done
at test time, but minibatches are no longer available at that point.

— Learn the normalization parameters to compensate for the expected
bias of the previous layer (usually a simple moving average)

e Effect
> Much improved convergence (but parameter values are important!)
> Widely used in practice
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Dropout [Srivastava, Hinton '12]

{ )

%

(9>
05
%!
O
o
&%
5N

t\\"h
\/ \/
§Q\;
':::
‘(f\“)\
743

P

X
i’
K
o
A/
y

A
()
\ 7/
)

e
S

o4
5
-
X
O
X
A\

Y

o

{/
//‘

S
i
&0
2
/)
2
iy,

(a) Standard Neural Net (b) After applyving dropout.

* |dea
> Randomly switch off units during training.

> Change network architecture for each data point, effectively training
many different variants of the network.

> When applying the trained network, multiply activations with the
probability that the unit was set to zero.

= Greatly improved performance
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Choosing the Right Learning Rate

* Behavior for different learning rates

E(w) E(w)
A | ) |
N <Ny X Ty
T > :_ >
a) O b) Ormin
(@))
’g E(o) E(o)
A A
\ f n>2n ,
U% n > nopt I ‘I\ Dpt
D \
S
N2
>
o)
"g- _
t (1) t = ()
§ c) O min d) Oin

| 15
B.Lebe | age source: Yann LeCun et al., Efficient BackProp (1998)
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Learning Rate vs. Training Error

8

Training error
—
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Image source: Goodfellow & Bengio book

B. Leibe



Reducing the Learning Rate

* Final improvement step after convergence is reached

. Reduce learning rate by a 1

factor of 10. Reduced

o .
~ Continue training for a few = learning rate
epochs. o
> Do this 1-3 times, then stop j%
training. £
>
* Effect Epoch

> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

* Be careful: Do not turn down the learning rate too soon!
> Further progress will be much slower/impossible after that.
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Slide adapted from Geoff Hinton B. Leibe
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Summary

* Deep multi-layer networks are very powerful.

e But training them is hard!
> Complex, non-convex learning problem
> Local optimization with stochastic gradient descent

* Main issue: getting good gradient updates for the lower
layers of the network
> Many seemingly small details matter!

> Weight initialization, normalization, data augmentation, choice of
nonlinearities, choice of learning rate, choice of optimizer,...

— Exercise 5 will guide you through those steps.
Take advantage of it!

B. Leibe
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Topics of This Lecture

* CNNs for Segmentation
> Fully Convolutional Networks (FCN)
> Encoder-Decoder architecture
> Transpose convolutions
> SKip connections
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Semantic Segmentation

* Semantic
Segmentation

> Label each pixel
in the image with
a category label |

- Don't differentiate &
Instances, only
care about pixels

* |nstance
segmentation

> Also give an
instance label
per pixel
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B. Leibe

Slide adapted from FeiFei Li
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Segmentation ldea: Sliding Window

Classify center
Extract patch  yixel with CNN

A
%At \ MAR
4 ) - | ~J\/J \/ b
X ). e x7 - \ \/ !
o L N v —/ —\ AQOAM
X \ L. XN \ [ N \ /\ \ |
¥ ‘ R = WA Y {1\
I} — |t ¥
) It s ALl ! h|
| ! | T piie 0 B
A \JHE . {
\P b ol \ \.
AT \ v it
| | \ 2 " o - L
) B | s
Uaa N | peews Py
(e.g., AlexNet)

* Problem
> Very inefficient
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3 > No reuse of features between shared patches
O

O
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Slide adapted from FeiFei Li B. Leibe
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Segmentation Idea: Fully-Convolutional Nets

- - N I - -
— — —_— —
Y / Scores: Predictions:
CxHxW HxW
Convolutions:
DxHxW

* Design a network as a sequence of convolutional layers
> To make predictions for all pixels at once

> Fully Convolutional Networks (FCNSs)
— All operations formulated as convolutions
— Fully-connected layers become 1x1 convolutions
— Advantage: can process arbitrarily sized images
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Slide adapted from FeiFei Li B. Leibe
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CNNs vs. FCNs

“tabby cat”

* CNN

600 P
At S S L

1

convolutionalization

tabby cat heatmap

00,00 %
5 s s

)
* Intuition
> Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class

> But: more efficient, since computations are reused between windows

24
Image source: Long, Shelhamer, Darrell
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Segmentation Idea: Fully-Convolutional Nets

- - N I - -
— — —_— —
Y / Scores: Predictions:
CxHxW HxW
Convolutions:
DxHxW

* Design a network as a sequence of convolutional layers
> To make predictions for all pixels at once

* Problem
> Convolutions at original image resolution will be very expensive!
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Slide adapted from FeiFei Li B. Leibe
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Segmentation Idea: Fully-Convolutional Nets

Med-res: Med-res:
D2 X H/4 x W/4 D2 X H/4 x W/4

f

Low-res:
D3 X H/4 x W/4

Input: High-res: High-res:

Predictions:
3xHxW D1xH/2xW/2 D1fo2xW/2 Hx W

% * Design a network as a sequence of convolutional layers
E > With downsampling and upsampling inside the network!

-}

)]

= > Downsampling

g’ — Pooling, strided convolution

O

3 > Upsampling

= _ 797

@)

26

Slide credit: FeiFei Li B. Leibe



In-Network Upsampling: “Unpooling”

Nearest Neighbor “Bed of Nails”

117112 2 11 0|2

112 _ 117112 2 112 0/ 0|0

3| 4 3 /3|44 3 4 ’ 3,014
31314 4 0O/ 00O
Input: 2 x 2 Qutput: 4 x 4 Input: 2 x 2 Output: 4 x 4

* Nearest-Neighbor
> Simplest version
> Problem: blocky output structure

* “Bed of Nails”

> Preserve fine-grained structure of the output
> Problem: fixed location for upsampled stimuli
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Slide credit: FeiFei Li B. Leibe
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In-Network Upsampling: "Max Unpooling

Max Pooling

) Max Unpoolin
Remember which element was max! P g

Use positions from

1 9 6 3 pooling layer 0 0 2 | 0
3 50121 5 6 T2 0 1 00
- - = —p 3 4
1 2 2 1 / 8 Rest of the network 0 0 0 0
7 3|4 8 3/ 0/0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

* Max Unpooling

> Use corresponding pairs of
downsampling and upsampling
layers together

> Remember which elements were max
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Slide credit: FeiFei Li B. Leibe



UNIVERSITY
Learnable Upsampling: Transpose Convolution

* Recall: Normal convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

 Effect

> Filter moves 2 pixels in the input for every one pixel in the output
> Stride gives ration between movement in input and output
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Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

* Recall: Normal convolution, stride 2 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

 Effect

> Filter moves 2 pixels in the input for every one pixel in the output
> Stride gives ration between movement in input and output
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Slide credit: FeiFei Li



Learnable Upsampling: Transpose Convolution

* Recall: Normal convolution, stride 2 pad 1

Dot product
between filter
and input

Input: 4 x4 Output: 2 x 2

 Effect

> Filter moves 2 pixels in the input for every one pixel in the output
> Stride gives ration between movement in input and output
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Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

* Now: 3x3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x4
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Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

* Now: 3x3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x4
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Slide credit: FeiFei Li
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Learnable Upsampling: Transpose Convolution

* Now: 3x3 transpose convolution, stride 2 pad 1

.
Input gives
weight for
filter Sum where
output overlaps
Input: 2 x 2 Output: 4 x4

 Effect

> Filter moves 2 pixels in the output for every one pixel in the input
> Stride gives ration between movement in output and input
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Slide credit: FeiFei Li



Learnable Upsampling: Transpose Convolution

* Now: 3x3 transpose convolution, stride 2 pad 1

.
Input gives
weight for
filter Sum where
output overlaps
Input: 2 x 2 Output: 4 x4

* Other names
> Deconvolution (bad)
> Upconvolution
> Fractionally strided convolution
> Backward strided convolution
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Slide credit: FeiFei Li



RWNTH
Learnable Upsampling: 1D Example

Output

Input Filter —
/ y < ay
a
az HFlbx
b 4 —
ya

\ E
* Observations

> Output contains copies of the filter weighted by the input, summing
overlaps in the output

> Need to crop one pixel from output to make output exactly 2x input

|
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R\WNTH
Convolution as Matrix Multiplication (1D Example)

* EXxpress convolution in terms T & G = Xk
of matrix multiplication 0
. Example: X Yy Z 0 0 0]f|a ay + bz
— 1D conv 0 x ¥ z 0 0l]lp _ ax + by + cz
— Kernel size = 3 00 x y z 0 ccl bx +cy +dz
— Stride 1, padding = 1 000 %y Z 0. cx +dy
e Convolution transpose 2xl g=XxTg
multiplies by the transpose
of the same matrix x 000 @
_ y x 0 O0lra ay + bx
> When strlde =1, o Z y x ollp az + by + cx
convolution transpose is just 0 z y x||¢| ™ |pz+cy+dx
a_regular con\{olutlon (with 0 0 z y d. cz + dy
different padding rules) 0 0 0 2 dz

37
Slide credit: FeiFei Li



RWNTH
Convolution as Matrix Multiplication (1D Example)

* EXxpress convolution in terms T & G = Xk
of matrix multiplication 01
> Example: a
_ 1D conv x y z 0 0 0]fp _ ay + bz ]
_ Kernel size = 3 0 0 xy z O CCl bx +cy +dz
— Stride 2, padding =1 n
=8l * Convolution transpose 2xl g=XxXTg
il multiplies by the transpose
£ of the same matrix x 0 ax
e > When stride > 1 y o v
2 _ ’ _ z x|[ay _laz+ bx
= convolution transpose is 0 y [b] | by
ko no longer a normal 0 bz
gz convolution! 0 0 0
@)

38

Slide credit: FeiFei Li
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Segmentation Idea: Fully-Convolutional Nets

Med-res: Med-res:
D2 X H/4 x W/4 D2 X H/4 x W/4

f

Low-res:
D3 X H/4 x W/4

Input: High-res: High-res:

Predictions:
3xHxW D1xH/2xW/2 D1fo2xW/2 Hx W

* Design a network as a sequence of convolutional layers
> With downsampling and upsampling inside the network!

> Downsampling
— Pooling, strided convolution

> Upsampling
— Unpooling or strided transpose convolution
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Slide credit: FeiFei Li B. Leibe



Extension: Skip Connections

* Encoder-Decoder Architecture with skip connections
> Problem: downsampling loses high-resolution information
> Use skip connections to preserve this higher-resolution information
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Image source: Newell et al.
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Example: SegNet

Convolutional Encoder-Decoder

Qutput

Pooling Indices

RGB Image -Con\.|r + Batch Normalisation + RelU Segmentation

I Pooling [ Upsampling Softmax

e SegNet
> Encoder-Decoder architecture with skip connections
> Encoder based on VGG-16
> Decoder using Max Unpooling
> Output with K-class Softmax classification

V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation, arXiv 1511.00561, IEEE Trans. PAMI 2017.

_ 41
B. Leibe


https://arxiv.org/pdf/1511.00561.pdf
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Example: U-Net

mput ground truth
IMAGE ae] i [ ||| —— segmentation
tile 4 o = 4 map (high-res)

- i ground truth
‘I |‘| (low-res w2)

* ' a=cony 3xd, Fell
m .............. | eane | DFOUNG truth copy and crop
- 7 - o o . (low-res x/4) *m;n' pool 2x2, stride 2
: ' ground truth § up-conv 4x4, stride 2
.FH_‘ i *m- IR T TR TR TAT R AR LT |—| {m oS w:l e GO ll l
REL R — PR & s 1 ground truth m softmax of

& (low-res %/16)
* U-Net
> Similar idea, popular in biomedical image processing
> Encoder-Decoder architecture with skip connections

O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical
Image Segmentation, MICCAI 2015

_ 42
B. Leibe


https://arxiv.org/pdf/1505.04597.pdf
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Semantic Segmentation

* Recent results
> Based on an extension of ResNets for high-resolution segmentation

Computer Vision Summer‘19

[Pohlen, Hermans, Mathias, Leibe, CVPR 2017]
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Topics of This Lecture

* Practical Advice on CNN training
> Data Augmentation
> Initialization
> Batch Normalization
> Dropout
> Learning Rate Schedules

* CNNs for Segmentation
> Fully Convolutional Networks (FCN)
> Encoder-Decoder architecture
> Transpose convolutions
>  Skip connections

* CNNs for Human Body Pose Estimation
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FCNs for Human Pose Estimation

* |nput data

Image Keypoints Labels
QRATIO

ORATIOr

(919) §41-9211 919) §41-9211

* Task setup
> Annotate images with keypoints for skeleton joints
> Define a target disk around each keypoint with radius r
> Set the ground-truth label to 1 within each such disk
> Infer heatmaps for the joints as in semantic segmentation
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Slide adapted from Georgia Gkioxari
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Heat Map Predictions from FCN

Test Image Right Ankle  Right Knee Right Hip Right Wrist ~ Right Elbow  Right Shoulder
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Slide adapted from Georgia Gkioxari
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Example Results: Human Pose Estimation
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[Rafi, Gall, Leibe, BMVC 2016]
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More Recently: Parts Affinity Fields

* https://www.youtube.com/watch?v=pWonZXeWIGM
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https://www.youtube.com/watch?v=pW6nZXeWlGM
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