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Topics of This Lecture

* Recap: Important Concepts from ML Lecture
— Probability Theory
— Bayes Decision Theory
— Maximum Likelihood Estimation
— New: Bayesian Estimation

* A Probabillistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting

e Discussion
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Recap: The Rules of Probability

 Basic rules

Sum Rule

Bayes’ Theorem

where
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Recap: Bayes Decision Theory

» Concept 1: Priors (a priori probabilities) ‘ p(Ck) ‘

— What we can tell about the probability before seeing the data.

— Example: ?
P(a)=0.75
P(b)=0.25

» In general: Z p(C,)=1
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Recap: Bayes Decision Theory

« Concept 2: Conditional probabilities \p(X | Ck)‘

— Let 2z be a feature vector.

— x measures/describes certain properties of the input.
= E.g. number of black pixels, aspect ratio, ...
— p(z|C}) describes its likelihood for class C,.
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Recap: Bayes Decision Theory

» Concept 3: Posterior probabilities ‘p(Ck | X)‘

— We are typically interested in the a posteriori probability, i.e. the
probability of class C, given the measurement vector zx.

* Bayes’ Theorem:
p(xIC)P(C)  P(xIC)P(Cy)

P(Celx)= p(x) :in(XICi)p(Ci)

* Interpretation

Likelihood x Prior
Normalization Factor
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Recap: Bayes Decision Theory

tp %&x |b) Likelihood

p(xil a)p(a ’

P (X | b) p(b) Likelihood x Prior

X:-

Decision boundary

[ p(a| X) p(b | )() Posterior — Likelihood x Prior

NormalizationFactor
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Recap: Gaussian (or Normal) Distribution

« One-dimensional case L
— Mean p

_ Variance o2 A

Nl 0?) = — exp{—@‘“)?}

2mo

 Multi-dimensional case
— Mean u
— Covariance X

Nl ®) = s exp 5 0™ x|
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Recap: Parametric Methods for Prob. Density Estimation

e Given
-Data X ={z1,x2,...,ZN}
— Parametric form of the distribution
with parameters 6

— E.g. for Gaussian distrib.: 0 = (,u, 0‘)

 Learning
— Estimation of the parameters 6

e Likelihood of 6

— Probability that the data X have indeed been generated from a
probability density with parameters 6
L(0) = p(X10)
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Recap: Maximum Likelihood Approach

« Computation of the likelihood
— Single data point: p(x,|0) = N(zn|p, o)

— Assumption: all data points X = {:cl, ..., x,} are independent

L(9) = p(X|0) = Hp Zn|0)
— Log-likelihood
E(f)=—InL(6) = — Z In p(z,,|6)

 Learning = Estimation of the parameters 6

— Maximize the likelihood (=minimize the negative log-likelihood)
— Take the derivative and set it to zero.

N 9
55D (%n|0)
9 pig) = aP(7nl6) 1
06 “ p(xn|0)
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Recap: Maximum Likelihood Approach

« Maximum Likelihood has several significant limitations
— It systematically underestimates the variance of the distribution!

— E.g. consider the case

N=1X={z} I g
X
= Maximum-likelihood estimate: 4 ~_ N
oc=0!
L —
— We say ML overfits to the observed data. %

— We will still often use ML, but it is important to know about this effect.
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Deeper Reason

« Maximum Likelihood is a Freguentist concept

— In the Frequentist view, probabilities are the frequencies of random,
repeatable events.

— These frequencies are fixed, but can be estimated more precisely
when more data is available.

« This Is Iin contrast to the Bayesian interpretation

— In the Bayesian view, probabilities quantify the uncertainty about
certain states or events.

— This uncertainty can be revised in the light of new evidence.

« Bayesians and Frequentists do not like A\
each other too well...

(S
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Bayesian vs. Frequentist View

* To see the difference...

— Suppose we want to estimate the uncertainty whether the
Arctic ice cap will have disappeared by the end of the century.

— This question makes no sense in a Frequentist view, since
the event cannot be repeated numerous times.

— In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

— If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o< Likelihood x Prior
— This generally allows to get better uncertainty estimates for
many situations.

« Main Frequentist criticism
— The prior has to come from somewhere and if it is wrong,

the result will be worse.
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Topics of This Lecture

* Recap: Important Concepts from ML Lecture
— Probability Theory
— Bayes Decision Theory
— Maximum Likelihood Estimation
— New: Bayesian Estimation

* A Probabillistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting

e Discussion
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Bayesian Approach to Parameter Learning

« Conceptual shift

— Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.
— In Bayesian learning, we consider 6 to be a random variable.

* This allows us to use knowledge about the parameters 6

—i.e., to use a prior for 6 posterior

— Training data then converts this p®lx)
prior distribution on @ into prior
a posterior probability density. p(8)

— The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
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Bayesian Learning Approach

« Bayesian view:

— Consider the parameter vector 6 as a random variable.
— When estimating the parameters, what we compute is

p(a:|X) — /p(a; 0 X)dé’ Assumption: given 0, this

doesn’t depend on X anymore

p(z,0|1X) = p(x|0, X)p(6]X)

mﬂxwafmﬂwmmxme
—

This is entirely determined by the parameter 6
(.e., by the parametric form of the pdf).
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Bayesian Learning Approach

p(] X) = / p(]0)p(6]X)de

%
— p(X[0)p(0) _ p(0)
PO =55 e

— Inserting this above, we obtain

_ [ p(z|0)L(O)p(0) ., [ p(x|0)L(0)p(0)
p(e]X) = / X YT Toopea ”

Visual Computing Institute | Prof. Dr . Bastian Leibe lel
Advanced Machine Learning 0 Visual Camputing
Part 2 — Linear Regression Institute

Slide credit: Bernt Schiele




Bayesian Learning Approach

* Discussion Likelihood of the parametric
form 6 given the data set X.

Estimate for £ based on Prior for the
parametric form 0 parameters 6

‘
p(z|0)L(6)p(0)
TLOwo@® "

I

Normalization: integrate
over all possible values of ¢

p(z|X) =

— The parameter values 6 are not the goal, just a means to an end.
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Bayesian Learning Approach

* Discussion
- [ p(z|0)L(0)p(0)
p(z|X) = /p(w|9)p(9|X)d9 ~ ) TL0)p0)do

— The probability p(€|X )makes the dependency of the estimate on the
data explicit.

do

— If p(0|X)is very small everywhere, but is large for one 0, then

p(z|X) =~ p(x|6)

— The more uncertain we are about €, the more we average over all
parameter values.

* Problem
— In the general case, exact integration over 6 is not possible / feasible.
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Topics of This Lecture

* A Probabilistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting
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Curve Fitting Revisited

» We've looked at curve fitting in terms of error minimization...

* Now view the problem from a probabilistic perspective

— Goal is to make predictions for target variable ¢
given new value for input variable z.

— Basis: training set x =(x, ..., z)"
with target values t = (¢, ..., t,)".

— We express our uncertainty over the value of the target variable using a
probability distribution

p(t|z,w, B)
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Probabilistic Regression

 First assumption:

— QOur target function values y are generated by adding noise to the
function estimate:

Target function ___» Y = f(X, W)—M\ Noise
value / \

Regression function Input value Weights or
(previously y(+)) parameters

« Second assumption:
— The noise is Gaussian distributed

p(ylx, w, 8) = N(y|f(x,w), 3"
/" \

Mean Variance
(G precision)
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Assumption: Gaussian Noise
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Probabilistic Regression

 Given
— Training data points: X = [x1,...,%n] € RAxn
— Associated function values: y = [y1,...,yn]’

« Conditional likelihood (assuming 1.1.d. data)

ply| X, w, ) = HNszsz, HN vilw' o(xi), 57)

= Maximize w.r.t. w, (3 /

Generalized linear

regression function
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Maximum Likelihood Regression

« Simplify the log-likelinood
logp(y|X, w,8) = Y logN(yi|w" ¢(xi),37")
1=1

En: llog (f—;) - g(yqz — Wch(Xz-))Z]

1=1
= Zlog— 2log(2m) — 5> (s~ wTo(x,))’
» Gradient w.r.t. w: =
Vwlogp(y|X,w,8) = —B8) (v — w' ¢(x;))p(x;)
1=1
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Maximum Likelihood Regression

Same as in least-squares
regression!
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Maximum Likelihood Regression

= Least-squares regression is equivalent to Maximum Likelihood under
the assumption of Gaussian noise.
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Role of the Precision Parameter

* Also use ML to determlne the precision parameter 3.

log p(t| X, w, 3) 6 Z{t —wlp(x,) } + — logﬁ N log(27r)

* Gradient w.r.t. (3:

|
|
DN
——
o
i
@
N
s
—~—’
Do
|
I

1

i lEN:{t —wlo(x )}2
BML N ~ ! "

= The inverse of the noise precision is given by the residual variance
of the target values around the regression function.
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Predictive Distribution

 Having determined the parameters w and 3, we can now
make predictions for new values of x.

p(t|X,WML,5ML) = N(ﬂy(X,WML)ﬁMi)

* This means
— Rather than giving a point
estimate, we can now also 1
give an estimate of the .

estimation uncertainty.

* What else can we do in the
Bayesian view of regression?
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MAP: A Step Towards Bayesian Estimation...

* Introduce a prior distribution over the coefficients w.
— For simplicity, assume a zero-mean Gaussian distribution

(M41)/2
p(wla) = N(w|0,a ') = (%) exp {—%WTW}

— New hyperparameter @ controls the distribution of model parameters.

« Express the posterior distribution over w.
— Using Bayes’ theorem:

p(w|X,t, 8, a) x p(t|X, w, B)p(w|a)

— We can now determine w by maximizing the posterior.
— This technique is called maximum-a-posteriori (MAP).
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MAP Solution

« Minimize the negative logarithm
—logp(w|X,t, 8, ) o —logp(t\X w, 3) — log p(w|c)

—log p(t| X, w,3) = 5 Z{y X, W) — t,n}2 + const

—logp(w|a) = %WTW + const

« The MAP solution iIs therefore the solution of
5 2 8
§ Z{y(xna W) o t?’b} + EWTW
—1

= Maximizing the posterior distribution is equiv&lent to minimizing the
regularized sum-of-squares error (with ) = —).
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Results of Probabillistic View on Regression

 Better understanding what linear regression means:

— Least-squares regression is equivalent to ML estimation under the
assumption of Gaussian noise.

= We can use the predictive distribution to give an uncertainty estimate
on the prediction.

= But: known problem with ML that it tends towards overfitting.

— L2-reqgularized regression (Ridge regression) is equivalent to MAP
estimation with a Gaussian prior on the parameters w.

= The prior controls the parameter values to reduce overfitting.
= This gives us a tool to explore more general priors.

 But still no full Bayesian Estimation yet
— Should integrate over all values of w instead of just making a

point estimate.
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Topics of This Lecture

* A Probabilistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting
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Bayesian Curve Fitting

« Given
— Training data points: X = [X1,...,%Xp] € RAxn
— Associated function values: t = [t1, N .,tn]T

— Our goal is to predict the value of ¢ for a new point x.

« Evaluate the predictive distribution

pltlz, X, t) = / p(t|, w)p(w|X, t)dw

- AN /)
Y '

—
What we just computed for MAP

— Noise distribution — again assume a Gaussian here

p(tlz, w) = N(tly(x,w),67")

— Assume that parameters a and 3 are fixed and known for now.
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Bayesian Curve Fitting

« Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

p(tlz, X, t) = N(tIm(z), s*())

— where the mean and variance are given by

m(z) = Bo(z)TS Y b(xn)tn

s(z)? =B+ d(x) " S¢(x)

—and S is the regularized covariance matrix

N
St =al+8) ¢(xn)d(xn)"
n=1
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Analyzing the result

« Analyzing the variance of the predictive distribution

=71+ ¢(2)" So(x)

N

Uncertainty in the predicted Uncertainty in the parameters w
value due to noise on the (consequence of Bayesian
target variables treatment)

(expressed already in ML)

38
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Bayesian Predictive Distribution

0 1
« Important difference to previous example
— Uncertainty may vary with test point z!

. s(z)? = 71 + ()" Sé()
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Topics of This Lecture

* Discussion
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Discussion

* We now have a better understanding of regression.
— Least-squares regression: Assumption of Gaussian noise

= We can now also plug in different noise models and explore how
they affect the error function.

— L2 reqgularization as a Gaussian prior on parameters w.

= We can now also use different regularizers and explore what
they mean.

—> Next lecture...

— General formulation with basis functions ¢(x).
— We can now also use different basis functions.
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Discussion (2)

« General regression formulation

— In principle, we can perform regression in arbitrary spaces
and with many different types of basis functions

— However, there is a caveat... Can you see what it is?

« Example: Polynomial curve fitting M = 3

D D
Y(x, W) = wp + E w;x; + E 5 Wi; T + SJ SJ Wik TiTi Tk

=1 7=1 ==1:

= Number of coefficients grows with D!

— The approach becomes quickly unpractical for high dimensions.
— This is known as the curse of dimensionality.

— We will encounter some ways to deal with this later.
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References and Further Reading

« More information on linear regression can be found in
Chapters 1.2.5-1.2.6 and 3.1-3.1.4 of

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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