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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Bayesian Regression

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 New: Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood

 Predictive Distribution

 Maximum-A-Posteriori (MAP) Estimation

 Bayesian Curve Fitting

• Discussion
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Recap: The Rules of Probability

• Basic rules

• From those, we can derive

Sum Rule

Product Rule

Bayes’ Theorem

where
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Recap: Bayes Decision Theory

• Concept 1: Priors (a priori probabilities)

 What we can tell about the probability before seeing the data.

 Example:

• In general:
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Slide credit: Bernt Schiele
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Recap: Bayes Decision Theory

• Concept 2: Conditional probabilities
 Let x be a feature vector.

 x measures/describes certain properties of the input.

 E.g. number of black pixels, aspect ratio, …

 p(x|Ck) describes its likelihood for class Ck.
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Slide credit: Bernt Schiele
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Recap: Bayes Decision Theory

• Concept 3: Posterior probabilities

 We are typically interested in the a posteriori probability, i.e. the 
probability of class Ck given the measurement vector x.

• Bayes’ Theorem:

• Interpretation
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Recap: Bayes Decision Theory

x

x

x

 |p x a  |p x b

 | ( )p x a p a

 | ( )p x b p b

 |p a x  |p b x

Decision boundary

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele
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Recap: Gaussian (or Normal) Distribution

• One-dimensional case
 Mean ¹

 Variance ¾2

• Multi-dimensional case
 Mean ¹

 Covariance Σ

N (xj¹; ¾2) = 1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp
½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006
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Recap: Parametric Methods for Prob. Density Estimation 

• Given 
 Data

 Parametric form of the distribution

with parameters µ

 E.g. for Gaussian distrib.:

• Learning

 Estimation of the parameters µ

• Likelihood of µ
 Probability that the data X have indeed been generated from a 

probability density with parameters µ

x

x
X = fx1; x2; : : : ; xNg

µ = (¹;¾)

L(µ) = p(Xjµ)

Slide adapted from Bernt Schiele
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Recap: Maximum Likelihood Approach

• Computation of the likelihood
 Single data point:

 Assumption: all data points                               are independent

 Log-likelihood

• Learning = Estimation of the parameters µ

 Maximize the likelihood (=minimize the negative log-likelihood)

 Take the derivative and set it to zero.

L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele

X = fx1; : : : ; xng
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• Maximum Likelihood has several significant limitations
 It systematically underestimates the variance of the distribution!

 E.g. consider the case 

 Maximum-likelihood estimate:

 We say ML overfits to the observed data.

 We will still often use ML, but it is important to know about this effect.

x
N = 1;X = fx1g

x

¾̂ = 0 !

¹̂

Slide adapted from Bernt Schiele

Recap: Maximum Likelihood Approach
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Deeper Reason

• Maximum Likelihood is a Frequentist concept
 In the Frequentist view, probabilities are the frequencies of random, 

repeatable events.

 These frequencies are fixed, but can be estimated more precisely 

when more data is available.

• This is in contrast to the Bayesian interpretation
 In the Bayesian view, probabilities quantify the uncertainty about 

certain states or events.

 This uncertainty can be revised in the light of new evidence.

• Bayesians and Frequentists do not like

each other too well…



15
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 2 – Linear Regression

Bayesian vs. Frequentist View

• To see the difference…
 Suppose we want to estimate the uncertainty whether the 

Arctic ice cap will have disappeared by the end of the century.

 This question makes no sense in a Frequentist view, since 
the event cannot be repeated numerous times.

 In the Bayesian view, we generally have a prior, e.g. from 
calculations how fast the polar ice is melting.

 If we now get fresh evidence, e.g. from a new satellite, we may 
revise our opinion and update the uncertainty from the prior.

 This generally allows to get better uncertainty estimates for 
many situations.

• Main Frequentist criticism
 The prior has to come from somewhere and if it is wrong, 

the result will be worse.

Posterior / Likelihood £Prior
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Topics of This Lecture

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 New: Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood

 Predictive Distribution

 Maximum-A-Posteriori (MAP) Estimation

 Bayesian Curve Fitting

• Discussion
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• Conceptual shift

 Maximum Likelihood views the true parameter vector µ to be 

unknown, but fixed.

 In Bayesian learning, we consider µ to be a random variable.

• This allows us to use knowledge about the parameters µ

 i.e., to use a prior for µ

 Training data then converts this

prior distribution on µ into 

a posterior probability density.

 The prior thus encodes knowledge we have about the type of 

distribution we expect to see for µ.

Slide adapted from Bernt Schiele

Bayesian Approach to Parameter Learning
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Bayesian Learning Approach

• Bayesian view: 

 Consider the parameter vector µ as a random variable.

 When estimating the parameters, what we compute is

p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ
(i.e., by the parametric form of the pdf).

Slide adapted from Bernt Schiele

Assumption: given µ, this

doesn’t depend on X anymore
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Bayesian Learning Approach

 Inserting this above, we obtain

p(xjX) =

Z
p(xjµ)p(µjX)dµ

p(µjX) =
p(Xjµ)p(µ)

p(X)
=

p(µ)

p(X)
L(µ)

p(X) =

Z
p(Xjµ)p(µ)dµ =

Z
L(µ)p(µ)dµ

p(xjX) =

Z
p(xjµ)L(µ)p(µ)

p(X)
dµ =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Slide credit: Bernt Schiele
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Bayesian Learning Approach

• Discussion

 The parameter values µ are not the goal, just a means to an end.

p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate 

over all possible values of µ

Likelihood of the parametric 

form µ given the data set X.

Prior for the 

parameters µ

Estimate for x based on

parametric form µ
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Bayesian Learning Approach

• Discussion

 The probability             makes the dependency of the estimate on the 
data explicit.

 If            is very small everywhere, but is large for one   , then

 The more uncertain we are about µ, the more we average over all 
parameter values.

• Problem
 In the general case, exact integration over µ is not possible / feasible.

p(xjX) =

Z
p(xjµ)p(µjX)dµ =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

p(µjX)

p(µjX) µ̂

p(xjX) ¼ p(xjµ̂)

Slide credit: Bernt Schiele

p(µjX)
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Topics of This Lecture

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 New: Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood

 Predictive Distribution

 Maximum-A-Posteriori (MAP) Estimation

 Bayesian Curve Fitting

• Discussion
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Curve Fitting Revisited

• We’ve looked at curve fitting in terms of error minimization…

• Now view the problem from a probabilistic perspective

 Goal is to make predictions for target variable t

given new value for input variable x.

 Basis: training set  x = (x1, …, xN)T

with target values  t = (t1, …, tN)T.

 We express our uncertainty over the value of the target variable using a 

probability distribution
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Probabilistic Regression

• First assumption: 

 Our target function values y are generated by adding noise to the 

function estimate:

• Second assumption:
 The noise is Gaussian distributed

y = f(x;w) + ²

p(yjx;w; ¯) =N(yjf(x;w); ¯¡1)

Target function

value

Regression function

(previously y(¢))
Input value Weights or

parameters

Noise

Mean Variance

(¯ precision)

Slide credit: Bernt Schiele
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Assumption: Gaussian Noise

Image source: C.M. Bishop, 2006
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Probabilistic Regression

• Given
 Training data points:

 Associated function values:

• Conditional likelihood (assuming i.i.d. data)

 Maximize w.r.t. w, ¯

X = [x1; : : : ;xn] 2 Rd£n

y = [y1; : : : ; yn]
T

p(yjX;w; ¯) =
nY

i=1

N (yijf(xi;w); ¯¡1) =

nY

i=1

N (yijwTÁ(xi); ¯
¡1)

Generalized linear

regression function

Slide credit: Bernt Schiele
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Maximum Likelihood Regression

• Simplify the log-likelihood

• Gradient w.r.t. w:

rw log p(yjX;w; ¯) = ¡¯
nX

i=1

(yi ¡wTÁ(xi))Á(xi)

Slide credit: Bernt Schiele

log p(yjX;w; ¯) =

nX

i=1

logN (yijwTÁ(xi); ¯
¡1)

=

nX

i=1

·
log

µ p
¯p
2¼

¶
¡ ¯

2
(yi ¡wTÁ(xi))

2

¸

=
n

2
log¯ ¡ n

2
log(2¼)¡ ¯

2

nX

i=1

(yi ¡wTÁ(xi))
2



28
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 2 – Linear Regression

Maximum Likelihood Regression

• Setting the gradient to zero:

rw log p(yjX;w; ¯) = ¡¯
nX

i=1

(yi ¡wTÁ(xi))Á(xi)

0 = ¡¯
nX

i=1

(yi ¡wTÁ(xi))Á(xi)

,
nX

i=1

yiÁ(xi) =

"
nX

i=1

Á(xi)Á(xi)
T

#
w

, ©y = ©©Tw

, wML = (©©T )¡1©y

Same as in least-squares

regression!

Slide credit: Bernt Schiele
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nX
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T
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nX
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©= [Á(x1); : : : ; Á(xn)]
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Maximum Likelihood Regression

• Setting the gradient to zero:

 Least-squares regression is equivalent to Maximum Likelihood under 

the assumption of Gaussian noise.

rw log p(yjX;w; ¯) = ¡¯
nX

i=1

(yi ¡wTÁ(xi))Á(xi)

0 = ¡¯
nX

i=1

(yi ¡wTÁ(xi))Á(xi)

,
nX

i=1

yiÁ(xi) =

"
nX

i=1

Á(xi)Á(xi)
T

#
w

, ©y = ©©Tw

, wML = (©©T )¡1©y

Slide credit: Bernt Schiele
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yiÁ(xi) =

"
nX
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T

#
w
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T
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Role of the Precision Parameter

• Also use ML to determine the precision parameter ¯:

• Gradient w.r.t. ¯:

 The inverse of the noise precision is given by the residual variance 

of the target values around the regression function.
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Predictive Distribution

• Having determined the parameters w and ¯, we can now 

make predictions for new values of x.

• This means
 Rather than giving a point

estimate, we can now also 
give an estimate of the 
estimation uncertainty.

• What else can we do in the
Bayesian view of regression?

Image source: C.M. Bishop, 2006
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MAP: A Step Towards Bayesian Estimation…

• Introduce a prior distribution over the coefficients w.

 For simplicity, assume a zero-mean Gaussian distribution

 New hyperparameter ® controls the distribution of model parameters.

• Express the posterior distribution over w.

 Using Bayes’ theorem:

 We can now determine w by maximizing the posterior.

 This technique is called maximum-a-posteriori (MAP).
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MAP Solution

• Minimize the negative logarithm

• The MAP solution is therefore the solution of

 Maximizing the posterior distribution is equivalent to minimizing the 

regularized sum-of-squares error (with            ).
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Results of Probabilistic View on Regression

• Better understanding what linear regression means:
 Least-squares regression is equivalent to ML estimation under the 

assumption of Gaussian noise.

 We can use the predictive distribution to give an uncertainty estimate 
on the prediction.

 But: known problem with ML that it tends towards overfitting.

 L2-regularized regression (Ridge regression) is equivalent to MAP 
estimation with a Gaussian prior on the parameters w.

 The prior controls the parameter values to reduce overfitting.

 This gives us a tool to explore more general priors.

• But still no full Bayesian Estimation yet
 Should integrate over all values of w instead of just making a 

point estimate.
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Topics of This Lecture

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 New: Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood

 Predictive Distribution

 Maximum-A-Posteriori (MAP) Estimation

 Bayesian Curve Fitting

• Discussion
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Bayesian Curve Fitting

• Given
 Training data points:

 Associated function values:

 Our goal is to predict the value of t for a new point x.

• Evaluate the predictive distribution

 Noise distribution – again assume a Gaussian here

 Assume that parameters ® and ¯ are fixed and known for now.

X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]
T

What we just computed for MAP
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Bayesian Curve Fitting

• Under those assumptions, the posterior distribution is a 

Gaussian and can be evaluated analytically:

 where the mean and variance are given by

 and S is the regularized covariance matrix
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Analyzing the result

• Analyzing the variance of the predictive distribution

38
B. Leibe

Uncertainty in the parameters w

(consequence of Bayesian

treatment)

Uncertainty in the predicted

value due to noise on the 

target variables

(expressed already in ML)
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Bayesian Predictive Distribution

• Important difference to previous example
 Uncertainty may vary with test point x!

Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood

 Predictive Distribution

 Maximum-A-Posteriori (MAP) Estimation

 Bayesian Curve Fitting

• Discussion
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Discussion

• We now have a better understanding of regression.
 Least-squares regression: Assumption of Gaussian noise

 We can now also plug in different noise models and explore how 

they affect the error function.

 L2 regularization as a Gaussian prior on parameters w.

 We can now also use different regularizers and explore what 

they mean.

 Next lecture…

 General formulation with basis functions Á(x).

 We can now also use different basis functions.
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Discussion (2)

• General regression formulation
 In principle, we can perform regression in arbitrary spaces 

and with many different types of basis functions

 However, there is a caveat… Can you see what it is?

• Example: Polynomial curve fitting, M = 3

 Number of coefficients grows with DM!

 The approach becomes quickly unpractical for high dimensions.

 This is known as the curse of dimensionality.

 We will encounter some ways to deal with this later.
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References and Further Reading

• More information on linear regression can be found in 

Chapters 1.2.5-1.2.6 and 3.1-3.1.4 of 

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006


