Machine Learning - Lecture 18
Inference & Applications
12.07.2016

Announcements
• Lecture evaluation
 » Please fill out the evaluation forms...

Course Outline
• Fundamentals (2 weeks)
 » Bayes Decision Theory
 » Probability Density Estimation
• Discriminative Approaches (5 weeks)
 » Linear Discriminant Functions
 » Statistical Learning Theory & SVMs
 » Ensemble Methods & Boosting
 » Decision Trees & Randomized Trees
• Generative Models (4 weeks)
 » Bayesian Networks
 » Markov Random Fields
 » Exact Inference
 » Applications

Topics of This Lecture
• Recap: Exact inference
 » Sum-Product algorithm
 » Max-Sum algorithm
 » Junction Tree algorithm
• Applications of Markov Random Fields
 » Application examples from computer vision
 » Interpretation of clique potentials
 » Unary potentials
 » Pairwise potentials
• Solving MRFs with Graph Cuts
 » Graph cuts for image segmentation
 » s-t mincut algorithm
 » Extension to non-binary case
 » Applications

Recap: Factor Graphs
• Joint probability
 » Can be expressed as product of factors: \(p(x) = \frac{1}{Z} \prod_{s} f_s(x_s) \)
 » Factor graphs make this explicit through separate factor nodes.
• Converting a directed polytree
 » Conversion to undirected tree creates loops due to moralization!
 » Conversion to a factor graph again results in a tree!

Recap: Sum-Product Algorithm
• Objectives
 » Efficient, exact inference algorithm for finding marginals.
• Procedure:
 » Pick an arbitrary node as root.
 » Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
 » Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
 » Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.
 \(p(x) \propto \prod_{x \in \omega(x)} \mu_{f_s \rightarrow x}(x) \)
• Computational effort
 » Total number of messages \(= 2 \times \text{number of graph edges} \).
Two kinds of messages
- Message from factor node to variable nodes:
 - Sum of factor contributions
 \[\mu_{f \to x}(x) \equiv \sum_{X_{\setminus x}} f(x, X_{\setminus x}) \]
 \[= \sum_{X_{\setminus x}} \phi_{x}(x) \prod_{m \in \text{e}(f) \setminus x} \mu_{x_m \to f}(x_{m}) \]
 - Message from variable node to factor node:
 - Product of incoming messages
 \[\mu_{x_{m} \to f}(x_{m}) \equiv \prod_{i \in \text{e}(x_{m}) \setminus f} \mu_{i \to x_{m}}(x_{m}) \]

⇒ Simple propagation scheme.

Key idea 1: Distributive Law (again)
- \(\max(ab, ac) = a \max(b, c) \)
- \(\max(a+b, a+c) = a + \max(b, c) \)

⇒ Exchange products/summations and max operations exploiting the tree structure of the factor graph.

Key idea 2: Max-Product → Max-Sum
- We are interested in the maximum value of the joint distribution
 \[p(x^{\text{max}}) = \max_{x} p(x) \]
 \[= \max_{x} \ln \max p(x) = \max_{x} \ln p(x) \]
- For numerical reasons, use the logarithm.
 \[\ln \max p(x) = \max \ln p(x) \]

⇒ Maximize the sum of log-probabilities.

Max-Sum Algorithm
- Objective: an efficient algorithm for finding
 - Value \(x^{\text{max}} \) that maximises \(p(x) \);
 - Value of \(p(x^{\text{max}}) \).

⇒ Application of dynamic programming in graphical models.

- In general, maximum marginals are joint maximum.
 - Example:
 \[\begin{align*}
 y &= 0 \quad x &= 1 \\
 y &= 1 \quad 0.3 & 0.0
 \end{align*} \]
 \[\arg \max_x p(x, y) = 1 \quad \arg \max_x p(x) = 0 \]

Max-Sum Algorithm
- Maximizing over a chain (max-product)
Max-Sum Algorithm

- Initialization (leaf nodes)
 \[\psi_{x \rightarrow f}(x) = 0 \quad \mu_{f \rightarrow x}(x) = \ln f(x) \]

- Recursion
 - Messages
 \[\mu_{f \rightarrow x}(x) = \mathop{\operatorname{max}}_{x_{\chi \setminus f}} \left[\ln f(x) + \sum_{m \in \chi(f) \setminus x} \mu_{m \rightarrow f}(x_m) \right] \]
 \[\mu_{x \rightarrow f}(x) = \sum_{l \in \text{dom}(x)f} \mu_{f \rightarrow x}(x) \]
 - For each node, keep a record of which values of the variables gave rise to the maximum state:
 \[\phi(x) = \mathop{\operatorname{arg\ max}}_{x_{\chi \setminus x}} \left[\ln f(x) + \sum_{m \in \chi(f) \setminus x} \mu_{m \rightarrow f}(x_m) \right] \]

Visualization of the Back-Tracking Procedure

- Example: Markov chain

Topics of This Lecture

- Factor graphs
 - Construction
 - Properties
- Sum-Product Algorithm for computing marginals
 - Key ideas
 - Derivation
 - Example
- Max-Sum Algorithm for finding most probable value
 - Key ideas
 - Derivation
 - Example
- Algorithms for loopy graphs
 - Junction Tree algorithm
 - Loopy Belief Propagation

Junction Tree Algorithm

- Motivation
 - Exact inference on general graphs.
 - Works by turning the initial graph into a junction tree with one node per clique and then running a sum-product-like algorithm.
 - Intractable on graphs with large cliques.

Loopy Belief Propagation

- Alternative algorithm for loopy graphs
 - Sum-Product on general graphs.
 - Strategy: simply ignore the problem.
 - Initial unit messages passed across all links, after which messages are passed around until convergence
 - Convergence is not guaranteed!
 - Typically break off after fixed number of iterations.
 - Approximate but tractable for large graphs.
 - Sometime works well, sometimes not at all.
Topics of This Lecture

- Recap: Exact inference
 - Sum-Product algorithm
 - Max-Sum algorithm
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Application examples from computer vision
 - Interpretation of clique potentials
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s+t mincut algorithm
 - Extension to non-binary case
 - Applications

Markov Random Fields (MRFs)

- What we’ve learned so far...
 - We know they are undirected graphical models.
 - Their joint probability factorizes into clique potentials,
 \[p(x) = \frac{1}{Z} \prod_{C} \psi_C(x_C) \]
 which are conveniently expressed as energy functions.
 \[\psi_C(x_C) = \exp(-E(x_C)) \]
 - We know how to perform inference for them.
 - Sum/Max-Product BP for exact inference in tree-shaped MRFs.
 - Loopy BP for approximate inference in arbitrary MRFs.
 - Junction Tree algorithm for converting arbitrary MRFs into trees.
- But what are they actually good for?
 - And how do we apply them in practice?

Markov Random Fields

- Allow rich probabilistic models.
 - But built in a local, modular way.
 - Learn local effects, get global effects out.
- Very powerful when applied to regular structures.
 - Such as images...

Applications of MRFs

- Many applications for low-level vision tasks
 - Image denoising

Applications of MRFs

- Many applications for low-level vision tasks
 - Image denoising
Applications of MRFs

- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration
 - Image segmentation

- Super-resolution
 - Convert a low-res image into a high-res image!

- Optical flow

Image source: [Freeman et al., CG&A'03]
Applications of MRFs

- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration
 - Image segmentation
 - Super-resolution
 - Optical flow
 - Stereo depth estimation

MRF Structure for Images

- Basic structure
 - Observation model
 - How likely is it that node x_i has label L_i, given observation y_i?
 - This relationship is usually learned from training data.
 - Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed “penalties”.

MRF Nodes as Patches

- More general relationships expressed by potential functions Φ and Ψ.

Network Joint Probability

- Interpretation of the factorized joint probability

$P(x, y) = \prod_i \Phi(x_i, y_i) \prod_{i,j} \Psi(x_i, x_j)$
Energy Formulation

- **Energy function**
 \[E(x, y) = \sum_x \phi(x, y) + \sum_{x,j} \psi(x, x_j) \]

 - Single-node potentials \(\phi \)
 - Encode local information about the given pixel/patch.
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
 - Pairwise potentials \(\psi \)
 - Encode neighborhood information.
 - How different is a pixel/patch’s label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

- **Single-node (unary) potentials** \(\phi \)
 - E.g., color model, modeled with a Mixture of Gaussians
 \[\phi(x_i, y; \theta_k) = \log \sum_k \theta_k p(k|x_i) N(y_i; \bar{y}_k, \Sigma_k) \]

 \[\Rightarrow \text{Learn color distributions for each label} \]

 - Pairwise potentials \(\psi \)
 - Discourages label changes except in places where there is also a large change in the observations.

How to Set the Potentials? Some Examples

- **Pairwise potentials**
 - Potts Model
 \[\psi(x_i, x_j; \theta) = \theta \delta(x_i \neq x_j) \]

 - Simplest discontinuity preserving model.
 - Discontinuities between any pair of labels are penalized equally.
 - Useful when labels are unordered or number of labels is small.

 - Extension: “contrast sensitive Potts model”
 \[\psi(x_i, x_j; g_{ij}(y); \theta_y) = \theta g_{ij}(y) \delta(x_i \neq x_j) \]

 where
 \[g_y(y) = e^{-\beta |y-y_i|} \]

 - Discourages label changes except in places where there is also a large change in the observations.

- **Unary potentials**
 - E.g., color model, modeled with a Mixture of Gaussians

 \[\phi(x_i, y; \theta_k) = \log \sum_k \theta_k p(k|x_i) N(y_i; \bar{y}_k, \Sigma_k) \]

 \[\Rightarrow \text{Learn color distributions for each label} \]

Example: MRF for Image Segmentation

- **MRF structure**
 - Pairwise potential \(\phi(D|x_i, x_j) \)
 - Unary potential \(\phi(D|x_i) \)

 - Pixels
 - Labels

 - Data (D)
 - Unary likelihood
 - Pair-wise Terms
 - MAP Solution

Extension: Conditional Random Fields (CRF)

- **Idea:** Model conditional instead of joint probability
 \[\psi(D|x_i) \]

- **Energy formulation**
 \[E(x) = \sum_i \phi(D|x_i) + \sum_{i,j} (\phi(D|x_i, x_j) + \psi(x_i, x_j)) + \text{const} \]

 - Uniform Prior
 - Contrast Term
 - Unary Likelihood

Energy Minimization

- **Goal:** Infer the optimal labeling of the MRF.

- **Many inference algorithms are available, e.g.**
 - Simulated annealing
 - Iterated conditional modes (ICM)
 - Belief propagation
 - Graph cuts
 - Variational methods
 - Monte Carlo sampling

- Recently, Graph Cuts have become a popular tool
 - Only suitable for a certain class of energy functions.
 - But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).
Topics of This Lecture

- Recap: Exact inference
 - Factor Graphs
 - Sum-Product/Max-Sum Belief Propagation
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Application examples from computer vision
 - Interpretation of clique potentials
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications

Graph Cuts for Binary Problems

- Idea: convert MRF into source-sink graph

Minimum cost cut can be computed in polynomial time (max-flow/min-cut algorithms)

Simple Example of Energy

\[E(L) = \sum_p D_p(L_p) + \sum_{p,q} w_{pq} \delta(L_p \neq L_q) \]

Unary potentials \(D_p \), pairwise potentials \(w_{pq} \). Links \(L_p \in \{s,t\} \)

(binary object segmentation)

Adding Regional Properties

Suppose \(I \) and \(I' \) are given “expected” intensities of object and background

Regional bias example

\[D_p(t) = \exp \left(-\frac{||I_p - I'||^2}{2\sigma^2} \right) \]

EM-style optimization

Topics of This Lecture

- Recap: Exact inference
 - Factor Graphs
 - Sum-Product/Max-Sum Belief Propagation
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Application examples from computer vision
 - Interpretation of clique potentials
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications
How Does it Work? The s-t-Mincut Problem

What is an st-cut?
An st-cut \((S,T)\) divides the nodes between source and sink.

What is the cost of an st-cut?
Sum of cost of all edges going from S to T

What is the st-mincut?
Cut with the minimum cost

Source

\(\{v_1, v_2 \ldots v_n\} \)

\(\{(v_1, v_2) \ldots\} \)

Costs \(\{c_{ij}\} \)

Sink

\(2\ + \ 1\ + \ 4\ = \ 7 \)

Slide credit: Pushmeet Kohli

The s-t-Mincut Problem

Source

\(\{v_1, v_2 \ldots v_n\} \)

\(\{(v_1, v_2) \ldots\} \)

Costs \(\{c_{ij}\} \)

Sink

\(5\ + \ 2\ + \ 9\ = \ 16 \)

Slide credit: Pushmeet Kohli

How to Compute the s-t-Mincut?
Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink

Constraints
Edges: Flow < Capacity
Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem
In every network, the maximum flow equals the cost of the st-mincut

Slide credit: Pushmeet Kohli

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

\(n: \) nodes
\(m: \) edges
\(U: \) maximum edge weight

<table>
<thead>
<tr>
<th>Year</th>
<th>Discoverer(s)</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>Dantzig</td>
<td>O(nm)</td>
</tr>
<tr>
<td>1956</td>
<td>Ford & Fulkerson</td>
<td>O(nm)</td>
</tr>
<tr>
<td>1959</td>
<td>Edmonds & Karp</td>
<td>O(nm^2)</td>
</tr>
<tr>
<td>1959</td>
<td>Dantzig</td>
<td>O(nm^2)</td>
</tr>
<tr>
<td>1973</td>
<td>Edmonds</td>
<td>O(n^3)</td>
</tr>
<tr>
<td>1974</td>
<td>Lawler</td>
<td>O(n^3)</td>
</tr>
<tr>
<td>1977</td>
<td>Cherkassky</td>
<td>O(nm^2)</td>
</tr>
<tr>
<td>1977</td>
<td>Cull & Sklansky</td>
<td>O(nm^2)</td>
</tr>
<tr>
<td>1983</td>
<td>Stoer & Tijdeman</td>
<td>O(nm^2)</td>
</tr>
<tr>
<td>1985</td>
<td>Goldberg & Tarjan</td>
<td>O(nmlog^2(n))</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja & Orlin</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1987</td>
<td>Ahuja et al</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1988</td>
<td>Charpan & Hagimag</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1988</td>
<td>Charpan & Vazirani</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1990</td>
<td>Charpan & Vazirani</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1990</td>
<td>Ahuja et al</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1992</td>
<td>Ahuja & Orlin</td>
<td>O(nm + n^2 log(n))</td>
</tr>
<tr>
<td>1993</td>
<td>Ahuja et al</td>
<td>O((n+m)log(n))</td>
</tr>
<tr>
<td>1994</td>
<td>Ahuja et al</td>
<td>O(n^2 log^2(n))</td>
</tr>
<tr>
<td>1997</td>
<td>Goldberg & Ries</td>
<td>O(n^2 log^2(n))</td>
</tr>
<tr>
<td>1997</td>
<td>Goldberg & Ries</td>
<td>O(n^2 log^2(n))</td>
</tr>
</tbody>
</table>

 Algorithms assume non-negative edge weights

Slide credit: Andrew Goldberg

Applications: Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity \((m \sim O(n))\)
- Dual search tree augmenting path algorithm [Boykov and Kolmogorov PAMI 2004]
 - Finds approximate shortest augmenting paths efficiently.
 - High worst-case time complexity.
 - Empirically outperforms other algorithms on vision problems.
 - Efficient code available on the web [http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html]
When Can s-t Graph Cuts Be Applied?

\[E(L) = \sum_{t\text{-links}} E_p(L_p) + \sum_{n\text{-links}} E(L_p, L_q) \]

- s-t graph cuts can only globally minimize binary energies that are submodular.
- Submodularity is the discrete equivalent to convexity.
 - Implies that every local energy minimum is a global minimum.
 - Solution will be globally optimal.

Submodularity is the discrete equivalent to convexity.

\[E(s, s) + E(t, t) \leq E(s, t) + E(t, s) \]

Submodularity ("convexity")

Topics of This Lecture

- Recap: Exact inference
 - Factor Graphs
 - Sum-Product/Max-Sum Belief Propagation
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Application examples from computer vision
 - Interpretation of clique potentials
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
- Applications

GraphCut Applications: “GrabCut”

- Interactive Image Segmentation [Boykov & Jolly, ICCV’01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges
- Procedure
 - User marks foreground and background regions with a brush.
 - This is used to create an initial segmentation which can then be corrected by additional brush strokes.

User segmentation cues

GrabCut: Data Model

- Obtained from interactive user input
 - User marks foreground and background regions with a brush
 - Alternatively, user can specify a bounding box

GrabCut: Example Results

- This is included in the newest versions of MS Office!
Applications: Interactive 3D Segmentation

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:

- Try the GraphCut implementation at http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html