Topics of This Lecture

- Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)

Topics of This Lecture

- Graphical Models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Decision Trees & Randomized Trees
 - Deep Learning
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference

Graphical Models - What and Why?

- It's got nothing to do with graphics!
- Probabilistic graphical models
 - It formalizes the structure of a probabilistic model.
 - It gives insights into the structure of a probabilistic model.
 - It finds efficient solutions using methods from graph theory.
 - It is a natural tool for dealing with uncertainty and complexity.
 - It has become an important way of designing and analyzing machine learning algorithms.
Example: Wet Lawn

- Mr. Holmes leaves his house.
 - He sees that the lawn in front of his house is wet.
 - This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
 - Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).
- Now Holmes looks at his neighbor’s lawn
 - The neighbor’s lawn is also wet.
 - This information increases the probability that it rained. And it lowers the probability for the sprinkler.

How can we encode such probabilistic relationships?

Directed Graphical Models

- or Bayesian networks
 - Are based on a directed graph.
 - The nodes correspond to the random variables.
 - The directed edges correspond to the (causal) dependencies among the variables.
 - The notion of a causal nature of the dependencies is somewhat hard to grasp.
 - We will typically ignore the notion of causality here.
 - The structure of the network qualitatively describes the dependencies of the random variables.

Example: Wet Lawn

- Directed graphical model / Bayesian network:
 - Rain
 - Sprinkler

"Rain can cause both lawns to be wet."
"Holmes’ lawn may be wet due to his sprinkler, but his neighbor’s lawn may not."

Directed Graphical Models

- Nodes or random variables
 - We usually know the range of the random variables.
 - The value of a variable may be known or unknown.
 - If they are known (observed), we usually shade the node:

unknown

known

- Examples of variable nodes
 - Binary events: Rain (yes / no), sprinkler (yes / no)
 - Discrete variables: Ball is red, green, blue, ...
 - Continuous variables: Age of a person, ...

Directed Graphical Models

- Most often, we are interested in quantitative statements
 - i.e. the probabilities (or densities) of the variables.
 - Example: What is the probability that it rained? ...
 - These probabilities change if we have
 - more knowledge,
 - less knowledge, or
 - different knowledge about the other variables in the network.

Directed Graphical Models

- Simplest case:
 - This model encodes
 - The value of b depends on the value of a.
 - This dependency is expressed through the conditional probability:
 \[p(b|a) \]
 - Knowledge about a is expressed through the prior probability:
 \[p(a) \]
 - The whole graphical model describes the joint probability of a and b:
 \[p(a, b) = p(b|a)p(a) \]

Directed Graphical Models

- If we have such a representation, we can derive all other interesting probabilities from the joint.
 - E.g. marginalization
 \[
 p(a) = \sum_b p(a, b) = \sum_b p(b|a)p(a)
 \]
 \[
 p(b) = \sum_a p(a, b) = \sum_a p(b|a)p(a)
 \]
 - With the marginals, we can also compute other conditional probabilities:
 \[
 p(a|b) = \frac{p(a, b)}{p(b)}
 \]

- Chains of nodes:

Directed Graphical Models

- Convergent connections:

Directed Graphical Models

- Evaluating the Bayesian network...
 - We start with the simple product rule:
 \[
 p(a, b, c) = p(a, b, c) p(b, c) p(c)
 \]
 - This means that we can rewrite the joint probability of the variables as
 \[
 p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R)
 \]
 - But the Bayesian network tells us that
 \[
 p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R)
 \]
 - i.e. rain is independent of sprinkler (given the cloudyness).
 - Wet grass is independent of the cloudyness (given the state of the sprinkler and the rain).
 - This is a factorized representation of the joint probability.
Directed Graphical Models

- Given
 - Variables: \(U = \{x_1, \ldots, x_n\} \)
 - Directed acyclic graph: \(G = (V, E) \)
 - \(V \): nodes = variables, \(E \): directed edges
 - We can express / compute the joint probability as
 \[
 p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i | \{x_j | j \in \text{pa}_i\})
 \]
 where \(\text{pa}_i \) denotes the parent nodes of \(x_i \).
 - We can express the joint as a product of all the conditional distributions from the parent-child relations in the graph.
 - We obtain a factorized representation of the joint.

\[
\begin{align*}
p(x_1, \ldots, x_7) &= p(x_1) p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) \\cdots \\
p(x_1, \ldots, x_7) &= p(x_1) p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) \cdots
\end{align*}
\]
Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_4|x_4)p(x_7|x_4, x_5) \]

General factorization

\[p(x) = \prod_{k=1}^{N} p(x_k|x_{pa_k}) \]

We can directly read off the factorization of the joint from the network structure!

Example: Classifier Learning

• Bayesian classifier learning
 - Given \(N \) training examples \(x = (x_1, \ldots, x_N) \) with target values \(t \)
 - We want to optimize the classifier \(y \) with parameters \(w \).
 - We can express the joint probability of \(t \) and \(w \):
 \[p(t, w) = p(w) \prod_{n=1}^{N} p(t_n|w, x_n) \]
 - Corresponding Bayesian network:

 ![Bayesian Network Diagram]

 • Short notation:

 \[\sim \text{ “Plate” (short notation for } N \text{ copies)} \]

 • Conditional Independence

 \[\Rightarrow \text{it’s the edges that are missing in the graph that are important! They encode the simplifying assumptions we make.} \]

Factorized Representation

• Reduction of complexity
 - Joint probability of \(n \) binary variables requires us to represent values by brute force
 \[O(2^n) \]
 - The factorized form obtained from the graph model only requires
 \[O(2^k) \]
 - \(k \): maximum number of parents of a node.

Conditional Independence

• Suppose we have a joint density with 4 variables.
 \[p(x_0, x_1, x_2, x_3) \]

 - For example, 4 subsequent words in a sentence:
 \[x_0 = \text{“Machine”}; \quad x_1 = \text{“learning”}; \quad x_2 = \text{“is”}; \quad x_3 = \text{“fun”} \]
 - The product rule tells us that we can rewrite the joint density:
 \[p(x_0, x_1, x_2, x_3) = p(x_3|x_0, x_1, x_2)p(x_2|x_0, x_1)p(x_1|x_0)p(x_0) \]

 \[= p(x_3|x_0, x_1, x_2)p(x_2|x_0, x_1)p(x_1|x_0)p(x_0) \]

 • The notion of conditional independence means that
 - Given a certain variable, other variables become independent.

 - More concretely here:
 \[p(x_3|x_0, x_1, x_2) = p(x_3|x_2) \]
 - This means that \(x_3 \) is conditionally independent from \(x_0 \) and \(x_1 \) given \(x_2 \).
 \[p(x_2|x_0, x_1) = p(x_2|x_1) \]
 - This means that \(x_2 \) is conditionally independent from \(x_0 \) given \(x_1 \).
 - Why is this?
 \[p(x_0, x_2|x_1) = p(x_2|x_1)p(x_0|x_1) \]
 \[= p(x_2|x_1)p(x_0|x_1) \]
Conditional Independence - Notation

- X is conditionally independent of Y given V
 - Equivalence: $X \perp Y | V \iff p(X,Y | V) = p(X | V)p(Y | V)$
 - Also: $X \perp Y | V \iff p(X,Y | V) = p(X| V)p(Y | V)$
 - Special case: Marginal Independence
 $$X \perp Y \iff X \perp Y | \emptyset \iff p(X,Y) = p(X)p(Y)$$
 - Often, we are interested in conditional independence between sets of variables:
 $$X \perp Y | V \iff \{X \perp Y | V, \forall X \in X \text{ and } \forall Y \in Y\}$$

First Case: Divergent (“Tail-to-Tail”)

- Divergent model

 ![Divergent Graph](image)

 - Are a and b independent?
 - Marginalize out c:
 $$p(a, b) = \sum_c p(a, b, c) = \sum_c p(a | c)p(b | c)p(c)$$
 - In general, this is not equal to $p(a)p(b)$.
 - The variables are not independent.

Second Case: Chain (“Head-to-Tail”)

- Let us consider a slightly different graphical model:

 ![Chain Graph](image)

 - Are a and b independent? No!
 $$p(a, b) = \sum_c p(a, b, c) = \sum_c p(c | a)p(b | a)p(a) = p(b | a)p(a)$$
 - If c becomes known, are a and b conditionally independent? Yes!
 $$p(a, b | c) = \frac{p(a | c)p(b | c)}{p(c)} = p(a | c)p(b | c)$$
Third Case: Convergent ("Head-to-Head")

- Let’s look at a final case: Convergent graph

 - Are a and b independent? YES!

 \[p(a, b) = \sum_c p(a, b, c) = \sum_c p(c|a, b)p(a)p(b) = p(a)p(b) \]

 - This is very different from the previous cases.
 - Even though a and b are connected, they are independent.

Summary: Conditional Independence

- Three cases
 - Divergent ("Tail-to-Tail")
 - Conditional independence when c is observed.
 - Chain ("Head-to-Tail")
 - Conditional independence when c is observed.
 - Convergent ("Head-to-Head")
 - Conditional independence when neither c, nor any of its descendants are observed.

D-Separation

- Definition
 - Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
 - A path from A to B is blocked if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
 - If all paths from A to B are blocked, A is said to be d-separated from B by C.
 - If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies \(A \perp B \mid C \).
 - Read: "A is conditionally independent of B given C.”

Explaining Away

- Let’s look at Holmes’ example again:

 - Observation "Holmes’ lawn is wet" increases the probability of both "Rain" and “Sprinkler”.

D-Separation: Example

- Exercise: What is the relationship between a and b?

 \[a \perp b \mid c \quad a \perp b \mid f \]
Explaining Away

• Let’s look at Holmes’ example again:

 Observation “Holmes’ lawn is wet” increases the probability of both “Rain” and “Sprinkler”.
 Also observing “Neighbor’s lawn is wet” decreases the probability for “Sprinkler”. (They’re conditionally dependent!)
 ➔ The “Sprinkler” is explained away.

Intuitive View: The “Bayes Ball” Algorithm

• Game
 - Can you get a ball from X to Y without being blocked by V?
 - Depending on its direction and the previous node, the ball can
 - Pass through (from parent to all children, from child to all parents)
 - Bounce back (from any parent/child to all parents/children)
 - Be blocked

The “Bayes Ball” Algorithm

• Game rules
 - An unobserved node ($W \notin V$) passes through balls from parents, but also bounces back balls from children.
 - An observed node ($W \in V$) bounces back balls from parents, but blocks balls from children.

⇒ The Bayes Ball algorithm determines those nodes that are d-separated from the query node.

Example: Bayes Ball

• Which nodes are d-separated from G given C and D?
Example: Bayes Ball

- Which nodes are d-separated from G given C and D?

$\Rightarrow F$ is d-separated from G given C and D.

The Markov Blanket

- Markov blanket of a node x_i:
 - Minimal set of nodes that isolates x_i from the rest of the graph.
 - This comprises the set of
 - Parents,
 - Children, and
 - Co-parents of x_i.

This is what we have to watch out for!

Summary

- Graphical models:
 - Marriage between probability theory and graph theory.
 - Give insights into the structure of a probabilistic model.
 - Direct dependencies between variables.
 - Conditional independence
 - Allow for efficient factorization of the joint.
 - Factorization can be read off directly from the graph.
 - Capability to explain away hypotheses by new evidence.

- Next lecture
 - Undirected graphical models (Markov Random Fields)
 - Efficient methods for performing exact inference.

References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop’s book.
 - Christopher M. Bishop
 - *Pattern Recognition and Machine Learning*
 - Springer, 2006