
P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Machine Learning – Lecture 14

Deep Learning II

20.06.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

 TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Course Outline

• Fundamentals (2 weeks)

 Bayes Decision Theory

 Probability Density Estimation

• Discriminative Approaches (5 weeks)

 Linear Discriminant Functions

 Statistical Learning Theory & SVMs

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

 Deep Learning

• Generative Models (4 weeks)

 Bayesian Networks

 Markov Random Fields

B. Leibe
2

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Recap: Learning Multi-layer Networks
 Backpropagation

 Computational graphs

 Automatic differentiation

• Gradient Descent
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Nonlinearities

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

3
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last

layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight in the direction of the gradient

4
B. Leibe

L2 loss

L2 regularizer

(“weight decay”)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

5
B. Leibe

last lecture

today

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

6
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

• Efficient propagation scheme

 yi is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer j and multiply with yi.

Recap: Backpropagation Algorithm

7
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Recap: MLP Backpropagation Algorithm

• Forward Pass

for k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

8
B. Leibe

• Backward Pass

for k = l, l-1, ...,1 do

endfor

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Recap: Learning Multi-layer Networks
 Backpropagation

 Computational graphs

 Automatic differentiation

• Gradient Descent
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Nonlinearities

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

9
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Computational Graphs

• We can think of mathematical expressions as graphs

 E.g., consider the expression

 We can decompose this into

the operations

and visualize this as a computational graph.

• Evaluating partial derivatives in such a graph

 General rule: sum over all possible paths from Y to X
and multiply the derivatives on each edge of the path together.

10
B. Leibe Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

• Problem: Combinatorial explosion

 Example:

 There are 3 paths from X to Y and 3 more from Y to Z.

 If we want to compute , we need to sum over 3£3 paths:

 Instead of naively summing over paths, it’s better to factor them

Factoring Paths

11
B. Leibe Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

• Efficient algorithms for computing the sum

 Instead of summing over all of the paths explicitly, compute

the sum more efficiently by merging paths back together at

every node.

Efficient Factored Algorithms

12
B. Leibe

Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Why Do We Care?

• Let’s consider the example again

 Using forward-mode differentiation

from b up...

 Runtime: O(#edges)

 Result: derivative of every node

with respect to b.

13
B. Leibe Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Why Do We Care?

• Let’s consider the example again

 Using reverse-mode differentiation

from e down...

 Runtime: O(#edges)

 Result: derivative of e with

respect to every node.

 This is what we want to compute in Backpropagation!

 Forward differentiation needs one pass per node. With backward

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

14
B. Leibe Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Recap: Learning Multi-layer Networks
 Backpropagation

 Computational graphs

 Automatic differentiation

• Gradient Descent
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Nonlinearities

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

15
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Obtaining the Gradients

• Approach 4: Automatic Differentiation

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
16

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Modular Implementation (e.g., Torch)

• Solution in many current Deep Learning libraries

 Provide a limited form of automatic differentiation

 Restricted to “programs” composed of “modules” with a

predefined set of operations.

• Each module is defined by two main functions

1. Computing the outputs y of the module given its inputs x

where x, y, and intermediate results are stored in the module.

2. Computing the gradient E/x of a scalar cost w.r.t. the

inputs x given the gradient E/y w.r.t. the outputs y

17
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Recap: Learning Multi-layer Networks
 Backpropagation

 Computational graphs

 Automatic differentiation

• Gradient Descent
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Nonlinearities

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

18
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

• Recall: Basic update equation

• Main questions

 On what data do we want to apply this?

 How should we choose the step size ´ (the learning rate)?

 In which direction should we update the weights?

19

B. Leibe

last lecture

today

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Stochastic vs. Batch Learning

• Batch learning

 Process the full dataset at

once to compute the

gradient.

• Stochastic learning

 Choose a single example

from the training set.

 Compute the gradient only

based on this example

 This estimate will generally

be noisy, which has some

advantages.

20
B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@En(w)

@wkj

¯̄
¯̄
w(¿)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Stochastiv vs. Batch Learning

• Batch learning advantages

 Conditions of convergence are well understood.

 Many acceleration techniques (e.g., conjugate gradients) only

operate in batch learning.

 Theoretical analysis of the weight dynamics and convergence

rates are simpler.

• Stochastic learning advantages

 Usually much faster than batch learning.

 Often results in better solutions.

 Can be used for tracking changes.

• Middle ground: Minibatches

21
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Minibatches

• Idea

 Process only a small batch of training examples together

 Start with a small batch size & increase it as training proceeds.

• Advantages

 Gradients will more stable than for stochastic gradient descent,

but still faster to compute than with batch learning.

 Take advantage of redundancies in the training set.

 Matrix operations are more efficient than vector operations.

• Caveat

 Error function should be normalized by the minibatch size, s.t.

we can keep the same learning rate between minibatches

22
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

23
B. Leibe Image source: Lucas Beyer

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
24

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

General Guideline

25
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Recap: Learning Multi-layer Networks
 Backpropagation

 Computational graphs

 Automatic differentiation

• Gradient Descent
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Nonlinearities

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

26
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Commonly Used Nonlinearities

• Sigmoid

• Hyperbolic tangent

• Softmax

27
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Commonly Used Nonlinearities (2)

• Hard tanh

• Rectified linear unit (ReLU)

• Maxout

28
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Usage

• Output nodes

 Typically, a sigmoid or tanh function is used here.

– Sigmoid for nice probabilistic interpretation (range [0,1]).

– tanh for regression tasks

• Internal nodes

 Historically, tanh was most often used.

 tanh is better than sigmoid for internal nodes, since it is

already centered.

 Internally, tanh is often implemented as piecewise linear

function (similar to hard tanh and maxout).

 More recently: ReLU often used for classification tasks.

30
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Topics of This Lecture

• Recap: Learning Multi-layer Networks
 Backpropagation

 Computational graphs

 Automatic differentiation

• Gradient Descent
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Nonlinearities

 Choosing Learning Rates

 Momentum

 RMS Prop

 Other Optimizers

31
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent

 Consider a simple 1D example first

 What is the optimal learning rate ´opt?

 If E is quadratic, the optimal learning rate is given by the

inverse of the Hessian

 What happens if we exceed this learning rate?

32
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Choosing the Right Learning Rate

• Behavior for different learning rates

33
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Learning Rate vs. Training Error

34
B. Leibe Image source: Goodfellow & Bengio book

Do not go beyond

this point!

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

35
B. Leibe Image source: Geoff Hinton Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

36
B. Leibe Image source: Geoff Hinton Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

The Momentum Method

• Idea

 Instead of using the gradient to change the position of the

weight “particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high

curvature by combining gradients with

opposite signs.

 Build up speed in directions with a

gentle but consistent gradient.

37
B. Leibe Image source: Geoff Hinton Slide credit: Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject

to a decay by ® < 1.

 Set the weight change to the current velocity

38
B. Leibe Slide credit: Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

The Momentum Method: Behavior

39
B. Leibe

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal

velocity

– If the momentum ® is close to 1, this is much faster than simple

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are

stuck in a ravine, the momentum can be smoothly raised to its final

value (e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent

oscillations without the momentum.

Slide credit: Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

40
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight

(determined empirically)
41

B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for

different weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign

of the gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)).

42

B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Other Optimizers (Lucas)

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

43
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Behavior in a Long Valley

44
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Behavior around a Saddle Point

45
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Visualization of Convergence Behavior

46
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
47

B. Leibe Image source: Yoshua Bengio

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce

the random fluctuations in the error due to

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower after that.
48

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o
r

Epoch

Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

Summary

• Deep multi-layer networks are very powerful.

• But training them is hard!

 Complex, non-convex learning problem

 Local optimization with stochastic gradient descent

• Main issue: getting good gradient updates for the lower

layers of the network

 Many seemingly small details matter!

 Weight initialization, normalization, data augmentation, choice

of nonlinearities, choice of learning rate, choice of optimizer,…

 In this lecture, we could only skim the surface. If you are

interested in using Deep Learning yourself, please check out the

Advanced ML lecture from last winter!

 49
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a
c
h

in
e
 L

e
a
rn

in
g

,
S

u
m

m
e
r

‘1
6

References and Further Reading

• More information on many practical tricks can be found

in Chapter 1 of the book

B. Leibe
70

G. Montavon, G. B. Orr, K-R Mueller (Eds.)

Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf

