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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 

 Deep Learning 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
2 
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Topics of This Lecture 

• Recap: Learning Multi-layer Networks 
 Backpropagation  

 Computational graphs 

 Automatic differentiation 
 

• Gradient Descent   
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Nonlinearities 

 Choosing Learning Rates 

 Momentum 

 RMS Prop 

 Other Optimizers 
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Recap: Learning with Hidden Units 

• How can we train multi-layer networks efficiently? 

 Need an efficient way of adapting all weights, not just the last 

layer. 

 

• Idea: Gradient Descent 

 Set up an error function 

 

 

with a loss L(¢) and a regularizer (¢). 
 

 E.g., 

 

 
 

 Update each weight          in the direction of the gradient             
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L2 loss  

L2 regularizer 

(“weight decay”)  
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Gradient Descent 

• Two main steps 

1. Computing the gradients for each weight 
 

2. Adjusting the weights in the direction of  

the gradient 

5 
B. Leibe 

last lecture 

today 
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Recap: Backpropagation Algorithm 

• Core steps 

1. Convert the discrepancy 

between each output and its 

target value into an error 

derivate. 

 
 

2. Compute error derivatives in 

each hidden layer from error 

derivatives in the layer above. 

 
 

3. Use error derivatives w.r.t. 

activities to get error derivatives 

w.r.t. the incoming weights 

6 
B. Leibe Slide adapted from Geoff Hinton 
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• Efficient propagation scheme 

 yi is already known from forward pass! (Dynamic Programming) 

 Propagate back the gradient from layer j and multiply with  yi.  

Recap: Backpropagation Algorithm 

7 
B. Leibe Slide adapted from Geoff Hinton 
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Recap: MLP Backpropagation Algorithm 

• Forward Pass 

 

for  k = 1, ..., l do 

 

 
 

endfor 

 

 

 

• Notes 

 For efficiency, an entire batch of data X is processed at once. 

 ¯ denotes the element-wise product 
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• Backward Pass 

 

for  k = l, l-1, ...,1 do 

 

 

 

 

endfor 

 

 

 

 

 



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

, 
S

u
m

m
e
r 

‘1
6

 

Topics of This Lecture 

• Recap: Learning Multi-layer Networks 
 Backpropagation  

 Computational graphs 

 Automatic differentiation 
 

• Gradient Descent   
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Nonlinearities 

 Choosing Learning Rates 

 Momentum 

 RMS Prop 

 Other Optimizers 
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Computational Graphs 

• We can think of mathematical expressions as graphs 

 E.g., consider the expression 

 
 

 We can decompose this into 

the operations 

 

 

 

 

and visualize this as a computational graph. 
 

• Evaluating partial derivatives       in such a graph 

 General rule: sum over all possible paths from Y to X 
and multiply the derivatives on each edge of the path together. 

10 
B. Leibe Slide inspired by Christopher Olah  Image source: Christopher Olah, colah.github.io 
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• Problem: Combinatorial explosion 

 Example: 

 

 

 

 

 There are 3 paths from X to Y and 3 more from Y to Z. 

 If we want to compute       , we need to sum over 3£3 paths: 

 

 
 

 Instead of naively summing over paths, it’s better to factor them 

 

Factoring Paths 

11 
B. Leibe Slide inspired by Christopher Olah  Image source: Christopher Olah, colah.github.io 
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• Efficient algorithms for computing the sum  

 Instead of summing over all of the paths explicitly, compute 

the sum more efficiently by merging paths back together at 

every node.  

 

Efficient Factored Algorithms 

12 
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Apply operator 

to every node. 

Apply operator 

to every node. 

Slide inspired by Christopher Olah  Image source: Christopher Olah, colah.github.io 
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Why Do We Care? 

• Let’s consider the example again 

 Using forward-mode differentiation  

from b up... 
 

 Runtime: O(#edges) 
 

 Result: derivative of every node 

with respect to b. 

13 
B. Leibe Slide inspired by Christopher Olah  Image source: Christopher Olah, colah.github.io 
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Why Do We Care? 

• Let’s consider the example again 

 Using reverse-mode differentiation  

from e down... 
 

 Runtime: O(#edges) 
 

 Result: derivative of e with  

respect  to every node. 

 

 

 

 This is what we want to compute in Backpropagation! 

 Forward differentiation needs one pass per node. With backward 

differentiation can compute all derivatives in one single pass. 

 Speed-up in O(#inputs) compared to forward differentiation! 
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B. Leibe Slide inspired by Christopher Olah  Image source: Christopher Olah, colah.github.io 
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Topics of This Lecture 

• Recap: Learning Multi-layer Networks 
 Backpropagation  

 Computational graphs 

 Automatic differentiation 
 

• Gradient Descent   
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Nonlinearities 

 Choosing Learning Rates 

 Momentum 

 RMS Prop 

 Other Optimizers 
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Obtaining the Gradients 

• Approach 4: Automatic Differentiation 

 

 

 

 

 

 

 

 Convert the network into a computational graph. 

 Each new layer/module just needs to specify how it affects the 

forward and backward passes. 

 Apply reverse-mode differentiation. 

 Very general algorithm, used in today’s Deep Learning packages 
16 
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Modular Implementation (e.g., Torch) 

• Solution in many current Deep Learning libraries 

 Provide a limited form of automatic differentiation 

 Restricted to “programs” composed of “modules” with a 

predefined set of operations. 
 

• Each module is defined by two main functions 

1. Computing the outputs y of the module given its inputs x  

 

 

where x, y, and intermediate results are stored in the module. 
 

2. Computing the gradient E/x of a scalar cost w.r.t. the  

inputs x given the gradient E/y w.r.t. the outputs y    

17 
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Topics of This Lecture 

• Recap: Learning Multi-layer Networks 
 Backpropagation  

 Computational graphs 

 Automatic differentiation 
 

• Gradient Descent   
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Nonlinearities 

 Choosing Learning Rates 

 Momentum 

 RMS Prop 

 Other Optimizers 
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Gradient Descent 

• Two main steps 

1. Computing the gradients for each weight 
 

2. Adjusting the weights in the direction of  

the gradient 

 

• Recall: Basic update equation 

 

 

 

• Main questions 

 On what data do we want to apply this? 

 How should we choose the step size ´ (the learning rate)? 

 In which direction should we update the weights? 

 
19 
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Stochastic vs. Batch Learning 

• Batch learning 

 Process the full dataset at 

once to compute the  

gradient. 

 

 
 

• Stochastic learning 

 Choose a single example 

from the training set. 

 Compute the gradient only 

based on this example 

 This estimate will generally 

be noisy, which has some 

advantages. 
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Stochastiv vs. Batch Learning 

• Batch learning advantages 

 Conditions of convergence are well understood. 

 Many acceleration techniques (e.g., conjugate gradients) only 

operate in batch learning. 

 Theoretical analysis of the weight dynamics and convergence 

rates are simpler. 

 

• Stochastic learning advantages 

 Usually much faster than batch learning. 

 Often results in better solutions. 

 Can be used for tracking changes. 

 

• Middle ground: Minibatches 

21 
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Minibatches 

• Idea 

 Process only a small batch of training examples together 

 Start with a small batch size & increase it as training proceeds. 
 

• Advantages 

 Gradients will more stable than for stochastic gradient descent, 

but still faster to compute than with batch learning. 

 Take advantage of redundancies in the training set. 

 Matrix operations are more efficient than vector operations. 
 

• Caveat 

 Error function should be normalized by the minibatch size, s.t. 

we can keep the same learning rate between minibatches 

 

22 
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Data Augmentation 

• Idea 

 Augment original data with synthetic variations 

to reduce overfitting 
 

• Example augmentations for images 

 Cropping 

 
 

 Zooming 

 
 

 Flipping 

 
 

 Color PCA 

 

 

 

 

 

 

23 
B. Leibe Image source: Lucas Beyer 
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Data Augmentation 

• Effect 

 Much larger training set 

 Robustness against expected 

variations 
 

• During testing 

 When cropping was used 

during training, need to  

again apply crops to get 

same image size. 

 Beneficial to also apply 

flipping during test. 

 Applying several ColorPCA 

variations can bring another 

~1% improvement, but at a 

significantly increased runtime. 
24 
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Augmented training data 

(from one original image) 

Image source: Lucas Beyer 
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General Guideline 
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Topics of This Lecture 

• Recap: Learning Multi-layer Networks 
 Backpropagation  

 Computational graphs 

 Automatic differentiation 
 

• Gradient Descent   
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Nonlinearities 

 Choosing Learning Rates 

 Momentum 

 RMS Prop 

 Other Optimizers 
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Commonly Used Nonlinearities 

• Sigmoid 

 

 

 
 

• Hyperbolic tangent 

 

 

 
 

• Softmax 
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Commonly Used Nonlinearities (2) 

• Hard tanh 

 

 

 
 

• Rectified linear unit (ReLU) 

 

 

 
 

• Maxout 

28 
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Usage 

• Output nodes 

 Typically, a sigmoid or tanh function is used here. 

– Sigmoid for nice probabilistic interpretation (range [0,1]). 

– tanh for regression tasks 

 

• Internal nodes 

 Historically, tanh was most often used. 

 tanh is better than sigmoid for internal nodes, since it is  

already centered. 

 Internally, tanh is often implemented as piecewise linear 

function (similar to hard tanh and maxout). 

 More recently: ReLU often used for classification tasks. 
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Topics of This Lecture 

• Recap: Learning Multi-layer Networks 
 Backpropagation  

 Computational graphs 

 Automatic differentiation 
 

• Gradient Descent   
 Stochastic Gradient Descent & Minibatches 

 Data Augmentation 

 Nonlinearities 

 Choosing Learning Rates 

 Momentum 

 RMS Prop 

 Other Optimizers 
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Choosing the Right Learning Rate 

• Analyzing the convergence of Gradient Descent 

 Consider a simple 1D example first 

 

 
 

 What is the optimal learning rate ´opt?  

 

 

 If E is quadratic, the optimal learning rate is given by the 

inverse of the Hessian 

 

 
 

 What happens if we exceed this learning rate? 

32 
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998) 
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Choosing the Right Learning Rate 

• Behavior for different learning rates 

33 
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998) 
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Learning Rate vs. Training Error 

 

34 
B. Leibe Image source: Goodfellow & Bengio book 

Do not go beyond 

this point! 
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Batch vs. Stochastic Learning 

• Batch Learning 

 Simplest case: steepest decent 

on the error surface. 

 Updates perpendicular to contour  

lines 

 

 

• Stochastic Learning 

 Simplest case: zig-zag around the 

direction of steepest descent. 

 Updates perpendicular to constraints 

from training examples. 

 

35 
B. Leibe Image source: Geoff Hinton Slide adapted from Geoff Hinton 
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Why Learning Can Be Slow 

• If the inputs are correlated 

 The ellipse will be very elongated. 

 The direction of steepest descent is 

almost perpendicular to the direction 

towards the minimum! 

 

 

 

 

 

 

 

This is just the opposite of what we want! 

 

36 
B. Leibe Image source: Geoff Hinton Slide adapted from Geoff Hinton 
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The Momentum Method 

• Idea 

 Instead of using the gradient to change the position of the 

weight “particle”, use it to change the velocity. 
 

• Intuition 

 Example: Ball rolling on the error surface 

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent. 
 

• Effect 

 Dampen oscillations in directions of high  

curvature by combining gradients with  

opposite signs. 

 Build up speed in directions with a  

gentle but consistent gradient. 

37 
B. Leibe Image source: Geoff Hinton Slide credit: Geoff Hinton 
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The Momentum Method: Implementation 

• Change in the update equations 

 Effect of the gradient: increment the previous velocity, subject 

to a decay by ® < 1. 

 

 
 

 Set the weight change to the current velocity 

38 
B. Leibe Slide credit: Geoff Hinton 
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The Momentum Method: Behavior 

39 
B. Leibe 

• Behavior 

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity 

 

 

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent. 
 

 At the beginning of learning, there may be very large gradients. 

– Use a small momentum initially (e.g., ®  = 0.5). 

– Once the large gradients have disappeared and the weights are 

stuck in a ravine, the momentum can be smoothly raised to its final 

value (e.g., ®  = 0.90 or even ®  = 0.99). 
 

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum. 

 
Slide credit: Geoff Hinton 
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Separate, Adaptive Learning Rates 

• Problem 

 In multilayer nets, the appropriate learning rates  

can vary widely between weights. 

 The magnitudes of the gradients are often very 

different for the different layers, especially 

if the initial weights are small. 

 Gradients can get very small in the early layers 

of deep nets. 

40 
B. Leibe Slide adapted from Geoff Hinton 
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Separate, Adaptive Learning Rates 

• Problem 

 In multilayer nets, the appropriate learning rates  

can vary widely between weights. 

 The magnitudes of the gradients are often very 

different for the different layers, especially 

if the initial weights are small. 

 Gradients can get very small in the early layers 

of deep nets. 

 The fan-in of a unit determines the size of the 

“overshoot” effect when changing multiple weights  

simultaneously to correct the same error. 

– The fan-in often varies widely between layers 
 

• Solution 

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically) 
41 

B. Leibe Slide adapted from Geoff Hinton 
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Better Adaptation: RMSProp 

• Motivation 

 The magnitude of the gradient can be very different for 

different weights and can change during learning. 

 This makes it hard to choose a single global learning rate. 

 For batch learning, we can deal with this by only using the sign 

of the gradient, but we need to generalize this for minibatches. 

 

• Idea of RMSProp 

 Divide the gradient by a running average of its recent magnitude 

 

 

 

 Divide the gradient by sqrt(MeanSq(wij,t)).  

 

 
42 

B. Leibe Slide adapted from Geoff Hinton 
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Other Optimizers (Lucas) 

• AdaGrad       [Duchi ’10] 

 

 

• AdaDelta      [Zeiler ’12] 

 

 

• Adam     [Ba & Kingma ’14] 

 

 

• Notes 

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings. 

 Adam is currently becoming the quasi-standard 

43 
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Behavior in a Long Valley 

 

44 
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp 
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Behavior around a Saddle Point 

 

45 
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp 
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Visualization of Convergence Behavior 

 

46 
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn 
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Trick: Patience 

• Saddle points dominate in high-dimensional spaces! 

 

 

 

 

 

 

 

 

 

 

 Learning often doesn’t get stuck, you just may have to wait... 
47 

B. Leibe Image source: Yoshua Bengio 
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Reducing the Learning Rate 

• Final improvement step after convergence is reached 

 Reduce learning rate by a 

factor of 10. 

 Continue training for a few 

epochs. 

 Do this 1-3 times, then stop 

training. 
 

 

• Effect 

 Turning down the learning rate will reduce  

the random fluctuations in the error due to  

different gradients on different minibatches. 
 

• Be careful: Do not turn down the learning rate too soon! 

 Further progress will be much slower after that. 
48 

B. Leibe 

Reduced 

learning rate 
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Slide adapted from Geoff Hinton 
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Summary 

• Deep multi-layer networks are very powerful. 
 

• But training them is hard! 

 Complex, non-convex learning problem 

 Local optimization with stochastic gradient descent 
 

• Main issue: getting good gradient updates for the lower 

layers of the network 

 Many seemingly small details matter! 

 Weight initialization, normalization, data augmentation, choice 

of nonlinearities, choice of learning rate, choice of optimizer,… 

 

 In this lecture, we could only skim the surface. If you are 

interested in using Deep Learning yourself, please check out the 

Advanced ML lecture from last winter! 

 49 
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References and Further Reading 

• More information on many practical tricks can be found 

in Chapter 1 of the book 
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