Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Topics of This Lecture
- Decision Trees
- Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Recap: Decision Trees

- Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.

Recap: CART Framework

- Six general questions
 - 1. Binary or multi-valued problem?
 - i.e. how many splits should there be at each node?
 - 2. Which property should be tested at a node?
 - i.e. how to select the query attribute?
 - 3. When should a node be declared a leaf?
 - i.e. when to stop growing the tree?
 - 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 - 5. How to deal with impure nodes?
 - i.e. when the data itself is ambiguous.
 - 6. How should missing attributes be handled?

CART - 2. Picking a Good Splitting Feature

- Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.
- Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property \(T \) at each node \(N \) that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity \(i(N) \).
 - Several possible definitions explored.
Picking a Good Splitting Feature

- **Goal**
 - Select the query (=split) that decreases impurity the most
 \[\Delta i(N) = i(N) - P_Li(N_L) - (1 - P_L)i(N_R) \]
- **Impurity measures**
 - Entropy impurity (information gain):
 \[i(N) = -\sum_{j} p(C_j|N) \log_2 p(C_j|N) \]
 - Gini impurity:
 \[i(N) = \sum_{j} p(C_j|N)p(C_j|N) = \frac{1}{2} \left[1 - \sum_{j} p^2(C_j|N) \right] \]

Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - **Prepruning**: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Cross-validation
 - Chi-square test
 - MDL
 - **Postpruning**: Grow the full tree, then remove subtrees that do not have sufficient evidence.
 - Merging nodes
 - Rule-based pruning
- In practice often preferable to apply post-pruning.

Recap: Decision Trees - Summary

- **Properties**
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.

Decision Trees - Computational Complexity

- **Given**
 - Data points \([x_1, \ldots, x_N]\)
 - Dimensionality \(D\)
- **Complexity**
 - Storage: \(O(N)\)
 - Test runtime: \(O(\log N)\)
 - Training runtime: \(O(DN^2 \log N)\)
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check \(D\) dimensions, for each need to sort \(N\) data points.
 \(O(DN \log N)\)

Topics of This Lecture

- Decision Trees
 - Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - Training runtime: $O(DN^2 \log N)$
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large D).
- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (= reducing entropy):
 \[
 \Delta E = \sum_{l=1}^{K} \sum_{j=1}^{N} p_l \log_2(p_l)
 \]

Randomized Decision Trees

- Randomized splitting
 - Faster training: $O(KN^2 \log N)$ with $K \ll D$.
 - Use very simple binary feature tests.
 - Typical choice
 - $K = 10$ for root node.
 - $K = 100d$ for node at level d.
- Effect of random split
 - Of course, the tree is no longer as powerful as a single classifier...
 - But we can compensate by building several trees.

Ensemble Combination

- Ensemble combination
 - Tree leaves (l, q) store posterior probabilities of the target classes.
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)
 \[
 p(C|x) = \frac{1}{L} \sum_{l=1}^{L} p_{l,q}(C|x)
 \]

Applications: Character Recognition

- Computer Vision: Optical character recognition
 - Classify small (14x20) images of handwritten characters/digits into one of 10 or 26 classes.
- Simple binary features
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

Applications: Character Recognition

- Image patches ("Tags")
 - Randomly sampled 4x4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a "patch class" and produces a tag
- Representation of digits ("Queries")
 - Specific spatial arrangements of tags
 - An image answers "yes" if any such structure is found anywhere
 - How do we know which spatial arrangements to look for?

Applications: Character Recognition

- Answer: Create a second-level decision tree!
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - Recurse...
- Classification
 - Average estimated posterior distributions stored in the leaves.
Applications: Fast Keypoint Detection

- Computer Vision: fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- Extremely simple features
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- Create forest of randomized decision trees
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection

- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
 - Extremely randomized trees
 - Random attribute selection

- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Random Forests (Breiman 2001)

- General ensemble method
 - Idea: Create ensemble of many (very simple) trees.

- Empirically very good results
 - Often as good as SVMs (and sometimes better)!
 - Often as good as Boosting (and sometimes better)!

- Standard decision trees: main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).

- Main secret
 - Injecting the "right kind of randomness".

Random Forests - Algorithmic Goals

- Create many trees (50 - 1,000)

- Inject randomness into trees such that
 - Each tree has maximal strength
 - I.e. a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e. the errors tend to cancel out.

- Ensemble of trees votes for final result
 - Simple majority vote for category.
 - Alternative (Friedman)
 - Optimally reweight the trees via regularized regression (lasso).

Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only ~63% of the original training data.
 - Remaining 37% "out-of-bag" (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.
Random Forests - Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of K attributes on which the split is based (typically $K = \sqrt{N}$).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.

- Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Bet You’re Asking...

How can this possibly ever work???

A Graphical Interpretation

Different trees induce different partitions on the data.

...which at the same time also better reflects the uncertainty due to the bootstraped sampling.
Summary: Random Forests

- Properties
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- Limitations
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - http://www.stat.berkeley.edu/users/breiman/RandomForests/
 - Papers, documentation, and code...
 - ...in Fortran 77.
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)
 - http://code.google.com/p/fast-random-forest/

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

A Case Study in Deconstructivism...

- What we’ve done so far
 - Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: \(O(KN^2 \log N) \)
 - Ensemble of weaker classifiers.

- How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options)...
 - Simply choose a random query at each node.
 - Complexity: \(O(N) \)
 - \textbf{Extremely randomized decision trees}

Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning (e.g. for keypoint detection)
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 - Very fast procedure, only few pixel-wise comparisons
 - No need to store the original patches!

Performance Comparison

- Results
 - Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

Topics of This Lecture
- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
- Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

What Does This Mean?
- Interpretation of the decision tree
 - We model the class conditional probabilities of a large number of binary features (the node queries).
 - Notation
 - \(f_j \): Binary feature
 - \(N_f \): Total number of features in the model.
 - \(C_k \): Target class
 - Given \(f_1, \ldots, f_N_f \), we want to select class \(C_k \) such that
 \[k = \arg \max_k p(C_k|f_1, \ldots, f_N_f) \]
 - Assuming a uniform prior over classes, this is the equal to
 \[k = \arg \max_k p(f_1, \ldots, f_N_f|C_k) \]
 - Main issue: How do we model the joint distribution?

From Trees to Ferns...
- Observation
 - If we select the node queries randomly anyway, what is the point of choosing different ones for each node?
 \[\Rightarrow \text{Keep the same query for all nodes at a certain level.} \]
 - This effectively enumerates all \(2^M \) possible outcomes of the \(M \) tree queries.
 - Tree can be collapsed into a fern-like structure.

Modeling the Joint Distribution
- Decision tree
 - Each path from the root to a leaf corresponds to a specific combination of feature outcomes, e.g.
 \[p_{\text{leaf}}(C_k) = p(f_{m1} = 1, f_{m2} = 0, \ldots, f_{md} = 1|C_k) \]
 - Those path outcomes are independent, therefore
 \[p(f_1, \ldots, f_N_f|C_k) \approx \prod_{m=1}^M p_{\text{leaf}}(C_k) \]
 - But not all feature outcomes are represented here...

Modeling the Joint Distribution
- Ferns
 - A fern \(F \) is defined as a set of \(S \) binary features \(\{f_0, \ldots, f_{S-1}\} \).
 - \(M \): number of ferns, \(N_f = S \cdot M \).
 - This represents a compromise:
 \[p(f_1, \ldots, f_N_f|C_k) \approx \prod_{m=1}^M p(F_m|C_k) \]
 \[= p(f_1, \ldots, f_{S-1}|C_k) \cdot p(f_S, \ldots, f_{2S}|C_k) \cdot \ldots \]
 \[\Rightarrow \text{Model with } M \cdot 2^S \text{ parameters ("Semi-Naïve").} \]
 - Flexible solution that allows complexity/performance tuning.

Modeling the Joint Distribution
- Naïve Bayes classifier
 - Assumption: all features are independent.
 \[p(f_1, \ldots, f_N_f|C_k) = \prod_{j=1}^{N_f} p(f_j|C_k) \]
 \[\Rightarrow \text{Too simplistic, assumption does not really hold!} \]
 \[\Rightarrow \text{Naïve Bayes model ignores correlation between features.} \]
Modeling the Joint Distribution

- **Ferns**
 - Ferns are thus semi-naive Bayes classifiers.
 - They assume independence between sets of features (between the ferns)...
 - ...and enumerate all possible outcomes inside each set.

- **Interpretation**
 - Combine the tests \(f_1, \ldots, f_n \) into a binary number.
 - Update the “fern leaf” corresponding to that number.

\[\begin{array}{c|c|c}
0 & 0 & 1 \\
\end{array} \]

Update leaf \(100_2 = 4 \)

Ferns - Training

The tests compare the intensities of two pixels around the keypoint:

\[f_i = \begin{cases}
1 & \text{if } I(x) \leq I(y) \\
0 & \text{otherwise} \end{cases} \]

Invariant to lighting change by any raising function.

Posterior probabilities:

\[P(f_1, f_2, \ldots, f_n \mid C = c_j) \]

Slide credit: Vincent Lepetit
Ferns - Training

![Training Ferns](image1)

Ferns - Training Results

![Training Results](image2)

Ferns - Recognition

![Recognition](image3)

Performance Comparison

- **Results**
 - Ferns perform as well as randomized trees (but are much faster)
 - Naïve Bayes combination better than averaging posteriors.

Keypoint Recognition in 10 Lines of Code

```java
1: for (int i = 0; i < H; i++) P[i] = 0.;
2: for (int k = 0; k < M; k++) {
3:   int index = 0, * d = D + k * 2 * S;
4:   for (int j = 0; j < S; j++) {
5:     index <<= 1;
6:     if (*(K + d[0]) < *(K + d[1]))
7:       index++;
8:     d += 2;
9:   }
10:   p = PF + k * shift2 + index * shift1;
11:   for (int i = 0; i < H; i++) P[i] += p[i];
}
```

- **Properties**
 - Very simple to implement;
 - (Almost) no parameters to tune;
 - Very fast.

Practical Issues - Selecting the Tests

- For a small number of classes
 - We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini

- When the number of classes is large
 - Any test does a decent job.

Summary

- We started from full decision trees...
 - Successively simplified the classifiers...
- ...and ended up with very simple randomized versions
 - Ensemble methods: Combination of many simple classifiers
 - Good overall performance
 - Very fast to train and to evaluate

- Common limitations of Randomized Trees and Ferns?
 - Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 - Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth.
 - Linear in the number of classes (histogram at each leaf)

References and Further Reading

- The original papers for Randomized Trees

- The original paper for Random Forests:

- The papers for Ferns: