Recap: Stacking

- **Idea**
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

- **Example**
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn "level-2" classifier based on the examples generated this way.

Recap: Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1, \ldots, H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 \[p(X) = \sum_{h=1}^{H} p(X|h)p(h) \]
 - **Average error of committee**
 \[E_{COM} = \frac{1}{M} E_{AV} \]
 - This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
 - Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Topics of This Lecture

- **AdaBoost**
 - Algorithm
 - Analysis
 - Extensions
- **Analysis**
 - Comparing Error Functions
- **Applications**
 - AdaBoost for face detection
- **Decision Trees**
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5
- **Ensemble Methods & Boosting**
 - Randomized Trees, Forests & Ferns
- **Bayesian Networks**
- **Markov Random Fields**
AdaBoost - Algorithm

1. Initialization: Set \(w^{(1)}_n = \frac{1}{N} \) for \(n = 1, \ldots, N \).
2. For \(m = 1, \ldots, M \) iterations
 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function
 \[
 J_m = \sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n) \quad \text{for all } \; t \in \{1, \ldots, C\} \quad \text{and all } \; h \text{, where } \; I_i = \begin{cases} 1, & \text{if } d_i, \; \text{else} 0. \end{cases}
 \]
 b) Estimate the weighted error of this classifier on \(X \):
 \[
 \varepsilon_m = \frac{1}{N} \sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n).
 \]
 c) Calculate a weighting coefficient for \(h_m(x) \):
 \[
 \alpha_m = \frac{\varepsilon_m}{(1-\varepsilon_m)}.
 \]
 d) Update the weighting coefficients:
 \[
 w^{(m+1)}_n = \frac{w^{(m)}_n}{Z_m},
 \]
 where \(Z_m = \sum_{n=1}^{N} \frac{w^{(m)}_n}{\alpha_m} \).

AdaBoost - Minimizing Exponential Error

- Exponential error function
 \[
 E = \sum_{n=1}^{N} \exp \left(-t_n f_m(x_n) \right)
 \]
 - where \(f_m(x) \) is a classifier defined as a linear combination of base classifiers \(h_l(x) \):
 \[
 f_m(x) = \frac{1}{2} \sum_{l=1}^{m} \alpha_l h_l(x)
 \]
 - Goal
 - Minimize \(E \) with respect to both the weighting coefficients \(\alpha_l \)
 and the parameters of the base classifiers \(h_l(x) \).

AdaBoost - Minimizing Minimizing Error Error

\[
E = \sum_{n=1}^{N} w^{(m)}_n \exp \left(-\frac{1}{2} t_n \alpha_m h_m(x_n) \right)
\]

Observation:
- Correctly classified points: \(t_n h_m(x_n) = +1 \) \(\Rightarrow \) collect in \(T_m \)
- Misclassified points: \(t_n h_m(x_n) = -1 \) \(\Rightarrow \) collect in \(F_m \)

Rewrite the error function as
\[
E = e^{-\alpha_m/2} \sum_{n \in T_m} w^{(m)}_n + e^{\alpha_m/2} \sum_{n \in F_m} w^{(m)}_n
\]

AdaBoost - Minimizing Exponential Error

\[
E = \sum_{n=1}^{N} w^{(m)}_n \exp \left(-\frac{1}{2} \alpha_m h_m(x_n) \right)
\]

Observation:
- Correctly classified points: \(t_n h_m(x_n) = +1 \) \(\Rightarrow \) collect in \(T_m \)
- Misclassified points: \(t_n h_m(x_n) = -1 \) \(\Rightarrow \) collect in \(F_m \)

Rewrite the error function as
\[
E = e^{-\alpha_m/2} \sum_{n \in T_m} w^{(m)}_n + e^{\alpha_m/2} \sum_{n \in F_m} w^{(m)}_n
\]
AdaBoost - Minimizing Exponential Error

- Minimize with respect to $h_m(x)$: $\frac{\partial E}{\partial h_m(x)} = 0$

$$E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2} \right) \sum_{n=1}^{N} w^{(m)}(n) I(h_m(x_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w^{(m)}(n)$$

$= const.$

\Rightarrow This is equivalent to minimizing

$$J_m = \sum_{n=1}^{N} w^{(m)}(n) I(h_m(x_n) \neq t_n)$$

(our weighted error function from step 2a of the algorithm)

\Rightarrow We’re on the right track. Let’s continue...

AdaBoost - Final Algorithm

1. Initialization: Set $w^{(1)}_n = \frac{1}{N}$ for $n = 1, \ldots, N$.
2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}(n)$ by minimizing the weighted error function
 $$J_m = \sum_{n=1}^{N} w^{(m)}(n) I(h_m(x_n) \neq t_n)$$
 b) Estimate the weighted error of this classifier on X:
 $$\epsilon_m = \frac{\sum_{n=1}^{N} w^{(m)}(n) I(h_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w^{(m)}(n)}$$
 c) Calculate a weighting coefficient for $h_m(x)$:
 $$\alpha_m = \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$
 d) Update the weighting coefficients:
 $$w^{(m+1)}_n = w^{(m)}_n \exp \left\{ -\frac{1}{2} \alpha_m I(h_m(x_n) \neq t_n) \right\}$$

AdaBoost - Analysis

- Result of this derivation
 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost’s behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.

Topics of This Lecture

- AdaBoost
 - Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5
Recap: Error Functions

- Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Squared error used in Least-Squares Classification

- Very popular, leads to closed-form solutions.
- However, sensitive to outliers due to squared penalty.
- Penalizes “too correct” data points
 - Generally does not lead to good classifiers.

“Hinge error” used in SVMs

- Zero error for points outside the margin ($z_n > 1$) ⇒ sparsity
- Linear penalty for misclassified points ($z_n < 1$) ⇒ robustness
- Not differentiable around $z_n = 1$ ⇒ Cannot be optimized directly.

Exponential error used in AdaBoost

- Continuous approximation to ideal misclassification function.
- Sequential minimization leads to simple AdaBoost scheme.
- Properties?

Exponential error used in AdaBoost

- No penalty for too correct data points, fast convergence.
- Disadvantage: exponential penalty for large negative values!
 - Less robust to outliers or misclassified data points!

“Cross-entropy error” used in Logistic Regression

- Similar to exponential error for $z > 0$.
- Only grows linearly with large negative values of z.
 - Make AdaBoost more robust by switching to this error function.
 - “GentleBoost”
Summary: AdaBoost

- **Properties**
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

- **Limitations**
 - Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
 - Single-class classifier
 - Multiclass extensions available

Topics of This Lecture

- Recap: AdaBoost
 - Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
 - Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a “patch”/window
- Now we’ll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

- “Rectangular” filters
 - Feature output is difference between adjacent regions
- Efficiently computable with integral image: any sum can be computed in constant time
- Avoid scaling images ➔ scale features directly for same cost

Large Library of Filters

- Considering all possible filter parameters: position, scale, and type:
 - 180,000+ possible features associated with each 24 x 24 window
- Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

- Resulting weak classifier:
 - \[h(x) = \begin{cases}
 +1 & \text{if } f(x) > \theta \\
 -1 & \text{otherwise}
 \end{cases} \]

- For next round, reweight the examples according to errors, choose another filter/threshold combo.
AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

Viola-Jones Face Detector: Results

Viola-Jones Face Detector: Results

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.
 - Christopher M. Bishop
 - Pattern Recognition and Machine Learning
 - Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:
Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.
- But...
 - Can be used for problems with nominal data
 - E.g. attributes color \(r, g, b \) or weather \(s, r \).
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...

- Example:
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

Elements

- Each node specifies a test for some attribute.
- Each branch corresponds to a possible value of the attribute.

Assumption

- Links must be mutually distinct and exhaustive
 - I.e. one and only one link will be followed at each step.

Interpretability

- Information in a tree can then be rendered as logical expressions.
 - In our example:
 - \((\text{Outlook} = \text{Sunny} \land \text{Humidity} = \text{Normal}) \lor (\text{Outlook} = \text{Overcast}) \lor (\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})\)

Training Decision Trees

- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?
CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

 ⇒ Only consider binary trees here...

CART - 2. Picking a Good Splitting Feature

- Goal
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

- Greedy top-down search
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property T at each node N that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity $i(N)$.

CART - Impurity Measures

- **Misclassification impurity**

 \[
 i(N) = 1 - \max_j p(C_j|N)
 \]

 “Fraction of the training patterns in category C_j that end up in node N.”

- **Entropy impurity**

 \[
 i(N) = -\sum_j p(C_j|N) \log_2 p(C_j|N)
 \]

 “Reduction in entropy = gain in information.”

- **Gini impurity (variance impurity)**

 \[
 i(N) = \sum_{i \neq j} p(C_i|N)p(C_j|N)
 \]

 \[
 = \frac{1}{2} - \sum_j p^2(C_j|N)
 \]

 “Expected error rate at node N if the category label is selected randomly.”

CART - Impurity Measures

- Which impurity measure should we choose?
 - Some problems with misclassification impurity.
 - Discontinuous derivative.
 - Problems when searching over continuous parameter space.
 - Sometimes misclassification impurity does not decrease when Gini impurity would.
 - Both entropy impurity and Gini impurity perform well.
 - No big difference in terms of classifier performance.
 - In practice, stopping criterion and pruning method are often more important.
CART - 2. Picking a Good Splitting Feature

- Application
 - Select the query that decreases impurity the most
 \[\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R) \]

- Multiway generalization (gain ratio impurity):
 - Maximize
 \[\Delta i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^{K} P_k i(N_k) \right) \]
 - where the normalization factor ensures that large \(K \) are not inherently favored:
 \[Z = -\sum_{k=1}^{K} P_k \log_2 P_k \]

CART - Picking a Good Splitting Feature

- For efficiency, splits are often based on a single feature
 - “Monothetic decision trees”

CART - 3. When to Stop Splitting

- Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

- Typical behavior

Decision Trees - Handling Missing Attributes

- During training
 - Calculate impurities at a node using only the attribute information present.
 - E.g. 3-dimensional data, one point is missing attribute \(x_3 \)
 - Compute possible splits on \(x_1 \) using all \(N \) points.
 - Compute possible splits on \(x_2 \) using all \(N \) points.
 - Compute possible splits on \(x_3 \) using \(N - 1 \) non-deficient points.
 \[\Rightarrow \text{Choose split which gives greatest reduction in impurity.} \]

- During test
 - Cannot handle test patterns that are lacking the decision attribute!
 \[\Rightarrow \text{In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.} \]

Decision Trees - Feature Choice

- Best results if proper features are used

Overfitting Prevention (Pruning)

- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.

- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[C_N = \arg \max_{k} p(C_k|N) \]

\[p(C_k|N) \]
Decision Trees - Feature Choice

- Best results if proper features are used
 - Preprocessing to find important axes often pays off.

Decision Trees - Non-Uniform Cost

- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.

- Incorporating non-uniform loss
 - Create loss matrix λ_{ij}
 - Loss can easily be incorporated into Gini impurity
 \[
 i(N) = \sum_{ij} \lambda_{ij} p(C_i)p(C_j)
 \]

Historical Development

- **ID3 (Quinlan 1986)**
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.
 - **Algorithm**
 - Select attribute a that best classifies examples, assign it to root.
 - For each possible value v_i of a,
 - Add new tree branch corresponding to test $a = v_i$.
 - If example_list(v_i) is empty, add leaf node with most common label in example_list(v_i).
 - Else, recursively call ID3 for the subtree with attributes $A \setminus a$.

- **C4.5 (Quinlan 1993)**
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multiway splits are used with nominal data
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning
 - **Main difference to CART**
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all B possible answers.
 - Decision is made based on all B possible outcomes, weighted by decision probabilities at node N.

Decision Trees - Computational Complexity

Given
- Data points $[x_1, ..., x_N]$
- Dimensionality D

Complexity
- Storage: $O(N)$
- Test runtime: $O(\log N)$
- Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check D dimensions, for each need to sort N data points.
 \[O(DN \log N)\]

Summary: Decision Trees

- **Properties**
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.
Summary: Decision Trees

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability:
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.

References and Further Reading

- More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000