Machine Learning - Lecture 10
Model Combination & Boosting
06.06.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Recap: SVM for Non-Separable Data

- Slack variables
 - One slack variable $\xi_i \geq 0$ for each training data point.
- Interpretation
 - $\xi_i = 0$ for points that are on the correct side of the margin.
 - $\xi_i = y_i - y(x_i)$ for all other points.

- We do not have to set the slack variables ourselves!
 \Rightarrow They are jointly optimized together with w.

Recap: SVM - New Dual Formulation

- New SVM Dual: Maximize
 $$L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m)$$
 under the conditions
 $$0 \cdot a_n \cdot C$$
 $$\sum_{n=1}^{N} a_n t_n = 0$$

- This is again a quadratic programming problem
 \Rightarrow Solve as before...

Recap: Nonlinear SVMs

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Recap: The Kernel Trick

- Important observation
 $\phi(x)$ only appears in the form of dot products $\phi(x)^T \phi(y)$:
 $$y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b$$
 - Define a so-called kernel function $k(x, y) = \phi(x)^T \phi(y)$.
 - Now, in place of the dot product, use the kernel instead:
 $$y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b$$
 - The kernel function implicitly maps the data to the higher-dimensional space (without having to compute $\phi(x)$ explicitly)!
Recap: Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize
 \[L(y(a)) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m) \]
 under the conditions
 \[\sum_{n=1}^{N} a_n t_n = 0 \]
 \[\sum_{n=1}^{N} a_n = C \]
- Classify new data points using
 \[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]

Recap: Error Functions

- \(t_n \in \{ -1, 1 \} \) Ideal misclassification error

 \[E(t_n) = t_n y(x_n) \]

 - Not differentiable
 - Ideal misclassification error function (black)
 - This is what we want to approximate.
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Error Functions (Loss Functions)

- "Hinge error" used in SVMs
 - Zero error for points outside the margin \((t_n > 1) \) sparsity
 - Linear penalty for misclassified points \((t_n < 1) \) robustness
 - Not differentiable around \(t_n = 1 \) Cannot be optimized directly.

SVM - Analysis

- Traditional soft-margin formulation
 \[\min_{w \in \mathbb{R}^n, \xi \in \mathbb{R}^+} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n \]
 subject to the constraints
 \[\sum_{n=1}^{N} a_n = 0 \]
 \[\sum_{n=1}^{N} a_n t_n = 0 \]
 \[t_n y(x_n) \geq 1 - \xi_n \]
- Different way of looking at it
 - We can reformulate the constraints into the objective function.
 \[\min_{w \in \mathbb{R}^n} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} (1 - t_n y(x_n))_+ \]
 where \((x)_+ := \max(0, x) \).

Recap: Error Functions

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - Generally does not lead to good classifiers.

SVM - Discussion

- SVM optimization function
 \[\min_{w \in \mathbb{R}^n} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} (1 - t_n y(x_n))_+ \]
 \[L_2 \text{ regularizer} \]
 \[\text{Hinge loss} \]
 \[\text{"Hinge loss enforces sparsity"} \]
 - Only a subset of training data points actually influences the decision boundary.
 - This is different from sparsity obtained through the regularizer!
 - There, only a subset of input dimensions are used.
 - Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by subgradient descent
 - Currently most efficient: stochastic gradient descent
Applications of SVMs: Text Classification

- **Problem:**
 - Classify a document in a number of categories

- **Representation:**
 - “Bag-of-words” approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features
 - This was one of the first applications of SVMs
 - T. Joachims (1997)

Example Application: Text Classification

- **Results:**

| Method | USPS benchmark error | Decision tree (C4.5) error | 2-layer Neural Network error | LeNet 1 error
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9%</td>
<td>16.2%</td>
<td>5.1%</td>
<td>4.0%</td>
<td></td>
</tr>
</tbody>
</table>

- **Handwritten digit recognition**
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms

Example Application: OCR

- **Results**

<table>
<thead>
<tr>
<th>Degree of Polynomial</th>
<th>Dimensionality of Feature Space</th>
<th>Support Vectors</th>
<th>Raw Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>282</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>≈ 3000</td>
<td>227</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>≈ 1 × 10^6</td>
<td>247</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>≈ 1 × 10^9</td>
<td>321</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>≈ 1 × 10^12</td>
<td>374</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>≈ 1 × 10^14</td>
<td>377</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>≈ 1 × 10^16</td>
<td>422</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Historical Importance

- **USPS benchmark**
 - 2.5% error: human performance

- **Different learning algorithms**
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

- **Different SVMs**
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - 4.1% error: Gaussian kernel (σ=0.3, 291 support vectors)
Example Application: Object Detection

- Sliding-window approach
- E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Example Application: Pedestrian Detection

N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human Detection, CVPR 2005

So Far...

- We've seen already a variety of different classifiers
 - k-NN
 - Bayes classifiers
 - Linear discriminants
 - SVMs
- Each of them has their strengths and weaknesses...
 - Can we improve performance by combining them?

Ensembles of Classifiers

- Intuition
 - Assume we have \(K \) classifiers.
 - They are independent (i.e., their errors are uncorrelated).
 - Each of them has an error probability \(p < 0.5 \) on training data.
 - Why can we assume that \(p \) won’t be larger than 0.5?
 - Then a simple majority vote of all classifiers should have a lower error than each individual classifier...

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - Cross-validation
 - Bagging
- Combining Classifiers
 - Stacking
 - Bayesian Model Averaging
 - Boosting
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
- Applications
Constructing Ensembles

- How do we get different classifiers?
 - Simplest case: train same classifier on different data.
 - But... where shall we get this additional data from?
 - Recall: training data is very expensive!

- Idea: Subsample the training data
 - Reuse the same training algorithm several times on different subsets of the training data.

- Well-suited for "unstable" learning algorithms
 - Unstable: small differences in training data can produce very different classifiers
 - E.g., Decision trees, neural networks, rule learning algorithms,...
 - Stable learning algorithms
 - E.g., Nearest neighbor, linear regression, SVMs,...

Constructing Ensembles

- Bagging = "Bootstrap aggregation" (Breiman 1996)
 - In each run of the training algorithm, randomly select M samples from the full set of N training data points.
 - If $M = N$, then on average, 63.2% of the training points will be represented. The rest are duplicates.

- Injecting randomness
 - Many (iterative) learning algorithms need a random initialization (e.g. k-means, EM)
 - Perform multiple runs of the learning algorithm with different random initializations.

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - Cross-validation
 - Bagging
- Combining Classifiers
 - Stacking
 - Bayesian Model Averaging
 - Boosting
- AdaBoost
- Intuition
- Algorithm
- Analysis
- Extensions
- Applications

Stacking

- Idea
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

- Example
 - Learn L classifiers with leave-one-out cross-validation.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn "level-2" classifier based on the examples generated this way.

Stacking

- Why can this be useful?
 - Simplicity
 - We may already have several existing classifiers available.
 - No need to retrain those, they can just be combined with the rest.
 - Correlation between classifiers
 - The combination classifier can learn the correlation.
 - Better results than simple Naive Bayes combination.
 - Feature combination
 - E.g. combine information from different sensors or sources (vision, audio, acceleration, temperature, radar, etc.).
 - We can get good training data for each sensor individually, but data from all sensors together is rare.
 - Train each of the L classifiers on its own input data.
 - Only combination classifier needs to be trained on combined input.
Model Combination

- E.g. Mixture of Gaussians
 - Several components are combined probabilistically.
 - Interpretation: different data points can be generated by different components.
 - We model the uncertainty which mixture component is responsible for generating the corresponding data point:
 \[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k) \]
 - For i.i.d. data, we write the marginal probability of a data set \(X = \{x_1, \ldots, x_N\} \) in the form:
 \[p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k) \]

Bayesian Model Averaging

- Model Averaging
 - Suppose we have \(H \) different models \(h = 1, \ldots, H \) with prior probabilities \(p(h) \).
 - Construct the marginal distribution over the data set
 \[p(X) = \sum_{h=1}^{H} p(X|h)p(h) \]
 - Interpretation
 - Just one model is responsible for generating the entire data set.
 - The probability distribution over \(h \) just reflects our uncertainty which model that is.
 - As the size of the data set increases, this uncertainty reduces, and \(p(X|h) \) becomes focused on just one of the models.

Note the Different Interpretations!

- Model Combination
 - Different data points generated by different model components.
 - Uncertainty is about which component created which data point.
 \(\Rightarrow \) One latent variable \(x_i \) for each data point:
 \[p(X) = \prod_{n=1}^{N} p(x_n) = \prod_{n=1}^{N} \sum_{m=1}^{M} p(x_n | h_m) \]

- Bayesian Model Averaging
 - The whole data set is generated by a single model.
 - Uncertainty is about which model was responsible.
 \(\Rightarrow \) One latent variable \(x \) for the entire data set:
 \[p(X) = \sum_{x} p(X, x) \]

Model Averaging: Expected Error

- Average error of individual models
 \[E_{AV} = \frac{1}{M} \sum_{m=1}^{M} E_x [\epsilon_m(x)^2] \]

- Average error of committee
 \[E_{COM} = E_x \left[\frac{1}{M} \sum_{m=1}^{M} y_m(x) - h(x) \right]^2 = E_x \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(x) \right]^2 \]

- Assumptions
 - Errors have zero mean: \(E_x [\epsilon_m(x)] = 0 \)
 - Errors are uncorrelated: \(E_x [\epsilon_m(x)\epsilon_f(x)] = 0 \)

- Then:
 \[E_{COM} = \frac{1}{M} E_{AV} \]

Model Averaging: Expected Error

- Average error of committee
 \[E_{COM} = \frac{1}{M} E_{AV} \]
 - This suggests that the average error of a model can be reduced by a factor of \(M \) simply by averaging \(M \) versions of the model!
 - Spectacular indeed...
 - This sounds almost too good to be true...

- And it is... Can you see where the problem is?
 - Unfortunately, this result depends on the assumption that the errors are all uncorrelated.
 - In practice, they will typically be highly correlated.
 - Still, it can be shown that
 \[E_{COM} \neq E_{AV} \]
Discussion: Ensembles of Classifiers

- Set of simple methods for improving classification
 - Often effective in practice.

- Apparent contradiction
 - We have stressed before that a classifier should be trained on samples from the distribution on which it will be tested.
 - Resampling seems to violate this recommendation.
 - Why can a classifier trained on a weighted data distribution do better than one trained on the i.i.d. sample?

- Explanation
 - We do not attempt to model the full category distribution here.
 - Instead, try to find the decision boundary more directly.
 - Also, increasing number of component classifiers broadens the class of implementable decision functions.

Topics of This Lecture

- Ensembles of Classifiers
- Constructing Ensembles
 - Cross-validation
 - Bagging
- Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting
- AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions
 - Applications

AdaBoost - “Adaptive Boosting”

- Main idea
 - Instead of resampling, reweight misclassified training examples.
 - Increase the chance of being selected in a sampled training set.
 - Or increase the misclassification cost when training on the full set.

- Components
 - \(h_m(x) \): “weak” or base classifier
 - Condition: <50% training error over any distribution
 - \(H(x) \): “strong” or final classifier

- AdaBoost:
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]

AdaBoost: Intuition

- Consider a 2D feature space with positive and negative examples.
- Each weak classifier splits the training examples with at least 50% accuracy.
- Examples misclassified by a previous weak learner are given more emphasis at future rounds.

Final classifier is combination of the weak classifiers
AdaBoost - Formalization

- 2-class classification problem
 - Given: training set \(X = \{x_1, \ldots, x_N\} \)
 - with target values \(T = \{t_1, \ldots, t_N\} \), \(t_n \in \{-1,1\} \).
 - Associated weights \(W=[w_1, \ldots, w_N] \) for each training point.
- Basic steps
 - In each iteration, AdaBoost trains a new weak classifier \(h_m(x) \)
 based on the current weighting coefficients \(W^{(m)} \).
 - We then adapt the weighting coefficients for each point
 - Increase \(w_n \) if \(x_n \) was misclassified by \(h_m(x) \).
 - Decrease \(w_n \) if \(x_n \) was classified correctly by \(h_m(x) \).
 - Make predictions using the final combined model
 \[H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) \]

AdaBoost - Algorithm

1. Initialization: Set \(w_1^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).
2. For \(m = 1, \ldots, M \) iterations
 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W^{(m)} \) by minimizing the weighted error function
 \[J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n) \]
 \(I \) is \(1, \) if \(m \) is true \(\) and \(0, \) else.
 b) Estimate the weighted error of this classifier on \(X \):
 \[e_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n) \]
 c) Calculate a weighting coefficient for \(h_m(x) \):
 \[\alpha_m = \frac{e_m}{e_m + e_{m+1}} \]
 d) Update the weighting coefficients:
 \[w_{n+1}^{(m+1)} = \frac{w_n^{(m)}}{\left(e_m + e_{m+1} \right)} \]

AdaBoost - Historical Development

- Originally motivated by Statistical Learning Theory
 - AdaBoost was introduced in 1996 by Freund & Schapire.
 - It was empirically observed that AdaBoost often tends not to overfit. (Breiman 96, Cortes & Drucker 97, etc.)
 - As a result, the margin theory (Schapire et al. 98) developed, which is based on loose generalization bounds.
 - Note: margin for boosting is not the same as margin for SVM.
 - A bit like retrofitting the theory ...
 - However, those bounds are too loose to be of practical value.
- Different explanation (Friedman, Hastie, Tibshirani, 2000)
 - Interpretation as sequential minimization of an exponential error function ("Forward Stagewise Additive Modeling").
 - Explains why boosting works well.
 - Improvements possible by altering the error function.

AdaBoost - Minimizing Exponential Error

- Sequential Minimization
 - Suppose that the base classifiers \(h_1(x), \ldots, h_m(x) \) and their coefficients \(\alpha_1, \ldots, \alpha_m \) are fixed.
 \(\Rightarrow \) Only minimize with respect to \(\alpha_m \) and \(h_m(x) \).
 - Error function
 \[E = \sum_{n=1}^{N} \exp \left\{ -t_n f_m(x_n) \right\} \]
 with \(f_m(x) = \frac{1}{2} \sum_{i=1}^{m} \alpha_i h_i(x) \)
 \[= \sum_{n=1}^{N} \exp \left\{ -t_n f_{m-1}(x_n) - \frac{1}{2} \alpha_m h_m(x_n) \right\} \]
 \(= \text{const.} \)
 \[= \sum_{n=1}^{N} w_n^{(m)} \exp \left\{ -\frac{1}{2} \alpha_m h_m(x_n) \right\} \]

- Observation:
 - Correctly classified points: \(I(h_m(x_n) = +1) \Rightarrow \text{collect in } \mathcal{T}_m \)
 - Misclassified points: \(I(h_m(x_n) = -1) \Rightarrow \text{collect in } \mathcal{F}_m \)
- Rewrite the error function as
 \[E = e^{-\alpha_m/2} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m/2} \sum_{n \in \mathcal{F}_m} w_n^{(m)} \]
 \[= \left(e^{\alpha_m/2} \right) \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n) \]
Recall that \(I + I = 1 \):

- Update the weighting coefficients:

 \[
 w^{(m+1)}_n = w^{(m)}_n \exp \left\{ -\frac{1}{2} \alpha_m h_m(x_n) \right\}
 \]

This allows us to analyze AdaBoost’s behavior in more detail.

- Estimate the weighted error of this classifier on \(X \):

 \[
 \epsilon_m = \frac{\sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n)}{\sum_{n=1}^{N} w^{(m)}_n} = e^{-\epsilon_m/2}
 \]

- Update for the \(\alpha \) coefficients:

 \[
 \alpha_m = \ln \left(1 - \frac{\epsilon_m}{\epsilon_m} \right)
 \]

AdaBoost - Minimizing Exponential Error

- Minimize with respect to \(h_m(x) \):

 \[
 E = \frac{1}{2} \frac{\partial E}{\partial h_m(x_n)} = 0
 \]

 \[
 E = \left(e^{\alpha_m/2} - e^{-\alpha_m/2} \right) \sum_{n=1}^{N} w^{(m)}_n I(h_m(x_n) \neq t_n) + e^{-\alpha_m/2} \sum_{n=1}^{N} w^{(m)}_n
 \]

 \[
 = \frac{1}{2} e^{-\epsilon_m/2} + \frac{1}{2} e^{\epsilon_m/2} = \text{const.}
 \]

 \[
 \Rightarrow \frac{1}{2} e^{-\epsilon_m/2} + \frac{1}{2} e^{\epsilon_m/2} = \text{const.}
 \]

 \[
 \Rightarrow \text{This is equivalent to minimizing}
 \]

 \[
 J_m = \sum_{n=1}^{N} w^{(m)}_n I(h_m(x) \neq t_n)
 \]

 (our weighted error function from step 2a of the algorithm)

 \[
 \Rightarrow \text{We’re on the right track. Let’s continue…}
 \]

AdaBoost - Analysis

- Result of this derivation

 - We now know that AdaBoost minimizes an exponential error function in a sequential fashion.
 - This allows us to analyze AdaBoost’s behavior in more detail.
 - In particular, we can see how robust it is to outlier data points.
Recap: Error Functions

- **Ideal misclassification error function** (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Squared error used in Least-Squares Classification

- Very popular, leads to closed-form solutions.
- However, sensitive to outliers due to squared penalty.
- Penalizes “too correct” data points
 - Generally does not lead to good classifiers.

“Hinge error” used in SVMs

- Zero error for points outside the margin \(z > 1 \) ⇒ sparsity
- Linear penalty for misclassified points \(z < 1 \) ⇒ robustness
- Not differentiable around \(z = 1 \) ⇒ Cannot be optimized directly.

Exponential error used in AdaBoost

- No penalty for too correct data points, fast convergence.
- Disadvantage: exponential penalty for large negative values!
 - Less robust to outliers or misclassified data points!

“Cross-entropy error” used in Logistic Regression

- Similar to exponential error for \(z > 0 \).
- Only grows linearly with large negative values of \(z \)
 - Make AdaBoost more robust by switching to this error function.
 - “GentleBoost”
Summary: AdaBoost

- Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

- Limitations
 - Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
 - Single-class classifier
 - Multiclass extensions available

Topics of This Lecture

- Ensembles of Classifiers
 - Constructing Ensembles
 - Bagging
 - Combining Classifiers
 - Stacking
 - Bayesian model averaging
 - Boosting
 - AdaBoost
 - Intuition
 - Algorithm
 - Analysis
 - Extensions

- Applications

Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a “patch”/window

- Now we’ll take AdaBoost and see how the Viola-Jones face detector works

Feature extraction

“Rectangular” filters

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images → scale features directly for same cost

Large Library of Filters

Considering all possible filter parameters: position, scale, and type:
180,000 possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

- Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

\[h(x) = \begin{cases}
 +1 & \text{if } f(x) > \theta_i \\
 -1 & \text{otherwise}
\end{cases} \]

For next round, reweight the examples according to errors, choose another filter/threshold combo.
AdaBoost for Efficient Feature Selection

- Image features = weak classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

(first version appeared at CVPR 2001)

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper: