Machine Learning - Lecture 9

Nonlinear SVMs

30.05.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & **SVMs**
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields
Topics of This Lecture

• **Support Vector Machines (Recap)**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification

• **Nonlinear Support Vector Machines**
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels

• **Analysis**
 - VC dimensions
 - Error function

• **Applications**
Recap: Support Vector Machine (SVM)

- **Basic idea**
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers
 \[w^T x + b = 0 \]

- **Formulation as a convex optimization problem**
 - Find the hyperplane satisfying
 \[\arg\min_{w,b} \frac{1}{2} \|w\|^2 \]
 under the constraints
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]
 based on training data points \(x_n \) and target values \(t_n \in \{-1, 1\} \).
Recap: SVM - Primal Formulation

- **Lagrangian primal form**

\[
L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\}
\]

\[
= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n y(x_n) - 1 \right\}
\]

- **The solution of** \(L_p\) **needs to fulfill the KKT conditions**

 - Necessary and sufficient conditions

 \[
a_n \geq 0 \\
t_n y(x_n) - 1 \geq 0 \\
a_n \left\{ t_n y(x_n) - 1 \right\} = 0
 \]

\[
\text{KKT:} \\
\lambda \geq 0 \\
f(x) \geq 0 \\
\lambda f(x) = 0
\]
Recap: SVM - Solution

• Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n \]
 - Sparse solution: \(a_n \neq 0 \) only for some points, the support vectors
 \(\Rightarrow \) Only the SVs actually influence the decision boundary!
 - Compute \(b \) by averaging over all support vectors:
 \[b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m \mathbf{x}_m^T \mathbf{x}_n \right) \]
Recap: SVM - Support Vectors

- The training points for which $a_n > 0$ are called "support vectors".

- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They *define* the margin and thus the hyperplane.

⇒ All other data points can be discarded!
Recap: SVM - Dual Formulation

- **Maximize**

 \[
 L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n)
 \]

 under the conditions

 \[
 a_n \geq 0 \quad \forall n
 \]

 \[
 \sum_{n=1}^{N} a_n t_n = 0
 \]

- **Comparison**

 - \(L_d \) is equivalent to the primal form \(L_p \), but only depends on \(a_n \).
 - \(L_p \) scales with \(O(D^3) \).
 - \(L_d \) scales with \(O(N^3) \) - in practice between \(O(N) \) and \(O(N^2) \).

Slide adapted from Bernt Schiele
So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
SVM - Non-Separable Data

- **Non-separable data**
 - I.e. the following inequalities cannot be satisfied for all data points
 \[
 \begin{align*}
 \mathbf{w}^T \mathbf{x}_n + b & \geq +1 & \text{for } t_n = +1 \\
 \mathbf{w}^T \mathbf{x}_n + b & \leq -1 & \text{for } t_n = -1
 \end{align*}
 \]
 - Instead use
 \[
 \begin{align*}
 \mathbf{w}^T \mathbf{x}_n + b & \geq +1 - \xi_n & \text{for } t_n = +1 \\
 \mathbf{w}^T \mathbf{x}_n + b & \leq -1 + \xi_n & \text{for } t_n = -1
 \end{align*}
 \]

 with “slack variables” \(\xi_n \geq 0 \quad \forall n \)
SVM - Soft-Margin Classification

- **Slack variables**
 - One slack variable $\xi_n \geq 0$ for each training data point.

- **Interpretation**
 - $\xi_n = 0$ for points that are on the correct side of the margin.
 - $\xi_n = |t_n - y(x_n)|$ for all other points (linear penalty).

- We do not have to set the slack variables ourselves!
 - \Rightarrow They are jointly optimized together with w.
SVM - Non-Separable Data

- Separable data
 - Minimize
 \[\frac{1}{2} \| \mathbf{w} \|^2 \]

- Non-separable data
 - Minimize
 \[\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{n=1}^{N} \xi_n \]

Trade-off parameter!
SVM - New Primal Formulation

- **New SVM Primal: Optimize**

\[
L_p = \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n (t_n y(x_n) - 1 + \xi_n) - \sum_{n=1}^{N} \mu_n \xi_n
\]

Constraint

\[t_n y(x_n) \geq 1 - \xi_n\]

Constraint

\[\xi_n \geq 0\]

- **KKT conditions**

\[
\begin{align*}
a_n &\geq 0 \\
t_n y(x_n) - 1 + \xi_n &\geq 0 \\
a_n (t_n y(x_n) - 1 + \xi_n) &= 0 \\
\mu_n \xi_n &= 0
\end{align*}
\]

KKT:

\[
\begin{align*}
\lambda &\geq 0 \\
f(x) &\geq 0 \\
\lambda f(x) &= 0
\end{align*}
\]
SVM - New Dual Formulation

• New SVM Dual: Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_na_m t_nt_m(x_m^T x_n) \]

under the conditions

\[0 \cdot a_n \cdot C \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

• This is again a quadratic programming problem

⇒ Solve as before... (more on that later)

This is all that changed!
SVM - New Solution

• Solution for the hyperplane
 – Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 – Again sparse solution: \(a_n = 0 \) for points outside the margin.

⇒ The slack points with \(\xi_n > 0 \) are now also support vectors!

• Compute \(b \) by averaging over all \(N_M \) points with \(0 < a_n < C \):
 \[b = \frac{1}{N_M} \sum_{n \in M} \left(t_n - \sum_{m \in M} a_m t_m x_m^T x_n \right) \]
Interpretation of Support Vectors

- Those are the hard examples!
 - We can visualize them, e.g. for face detection
Topics of This Lecture

• Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification

• Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels

• Analysis
 - VC dimensions
 - Error function

• Applications
So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
 ⇒ Slack variables.

- Only looked at linear decision boundaries...
 - This is not sufficient for many applications.
 - Want to generalize the ideas to non-linear boundaries.
Nonlinear SVM

- **Linear SVMs**
 - Datasets that are linearly separable with some noise work well:

 ![Linear SVM Diagram](image)

 - But what are we going to do if the dataset is just too hard?

 ![Nonlinear SVM Diagram](image)

 - How about... mapping data to a higher-dimensional space:
Another Example

- Non-separable by a hyperplane in 2D

Slide credit: Bill Freeman
Another Example

- Separable by a surface in 3D
Nonlinear SVM - Feature Spaces

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]
Nonlinear SVM

• General idea
 - Nonlinear transformation ϕ of the data points x_n:
 $$ x \in \mathbb{R}^D \quad \phi : \mathbb{R}^D \rightarrow \mathcal{H} $$
 - Hyperplane in higher-dim. space \mathcal{H} (linear classifier in \mathcal{H})
 $$ w^T \phi(x) + b = 0 $$
 \Rightarrow Nonlinear classifier in \mathbb{R}^D.

Slide credit: Bernt Schiele
What Could This Look Like?

- Example:
 - Mapping to polynomial space, \(x, y \in \mathbb{R}^2 \):

\[
\phi(x) = \begin{bmatrix}
 x_1^2 \\
 \sqrt{2}x_1x_2 \\
 x_2^2
\end{bmatrix}
\]

- Motivation: Easier to separate data in higher-dimensional space.
- But wait - isn’t there a big problem?
 - How should we evaluate the decision function?
Problem with High-dim. Basis Functions

Problem

- In order to apply the SVM, we need to evaluate the function
 \[y(x) = \mathbf{w}^T \phi(x) + b \]

- Using the hyperplane, which is itself defined as
 \[\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(x_n) \]

\[\Rightarrow \text{What happens if we try this for a million-dimensional feature space } \phi(x) ? \]

- Oh-oh...
Solution: The Kernel Trick

• Important observation
 - $\phi(x)$ only appears in the form of dot products $\phi(x)^T \phi(y)$:
 \[
 y(x) = w^T \phi(x) + b
 \]
 \[
 = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b
 \]
 - Trick: Define a so-called kernel function $k(x,y) = \phi(x)^T \phi(y)$.
 - Now, in place of the dot product, use the kernel instead:
 \[
 y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b
 \]
 - The kernel function *implicitly* maps the data to the higher-dimensional space (without having to compute $\phi(x)$ explicitly)!
Back to Our Previous Example...

- **2nd degree polynomial kernel:**

\[
\phi(x)^T \phi(y) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ \sqrt{2}y_1 y_2 \\ y_2^2 \end{bmatrix}
\]

\[
= x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2
\]

\[
= (x^T y)^2 =: k(x, y)
\]

- Whenever we evaluate the kernel function \(k(x, y) = (x^T y)^2 \), we implicitly compute the dot product in the higher-dimensional feature space.
SVMs with Kernels

- Using kernels
 - Applying the kernel trick is easy. Just replace every dot product by a kernel function...
 \[x^T y \rightarrow k(x, y) \]
 - ...and we’re done.
 - Instead of the raw input space, we’re now working in a higher-dimensional (potentially infinite dimensional!) space, where the data is more easily separable.

 “Sounds like magic...”

- Wait - does this always work?
 - The kernel needs to define an implicit mapping to a higher-dimensional feature space \(\phi(x) \).
 - When is this the case?
Which Functions are Valid Kernels?

- **Mercer’s theorem (modernized version):**
 - Every positive definite symmetric function is a kernel.

- Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

\[
K = \begin{bmatrix}
 k(x_1,x_1) & k(x_1,x_2) & k(x_1,x_3) & \cdots & k(x_1,x_n) \\
 k(x_2,x_1) & k(x_2,x_2) & k(x_2,x_3) & \cdots & k(x_2,x_n) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 k(x_n,x_1) & k(x_n,x_2) & k(x_n,x_3) & \cdots & k(x_n,x_n)
\end{bmatrix}
\]

(positive definite = all eigenvalues are > 0)
Kernels Fulfilling Mercer’s Condition

- **Polynomial kernel**
 \[k(x, y) = (x^T y + 1)^p \]

- **Radial Basis Function kernel**
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 e.g. Gaussian

- **Hyperbolic tangent kernel**
 \[k(x, y) = \tanh(\kappa x^T y + \delta) \]
 e.g. Sigmoid

(and many, many more...)

Actually, this was wrong in the original SVM paper...
Example: Bag of Visual Words Representation

- General framework in visual recognition
 - Create a codebook (vocabulary) of prototypical image features
 - Represent images as histograms over codebook activations
 - Compare two images by any histogram kernel, e.g. χ^2 kernel

$$k_{\chi^2}(h, h') = \exp \left(-\frac{1}{\gamma} \sum_j \frac{(h_j - h'_j)^2}{h_j + h'_j} \right)$$
Nonlinear SVM - Dual Formulation

- **SVM Dual: Maximize**

 \[
 L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_m, x_n)
 \]

 under the conditions

 \[
 0 \cdot a_n \cdot C \\
 \sum_{n=1}^{N} a_n t_n = 0
 \]

- **Classify new data points using**

 \[
 y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b
 \]

B. Leibe
SVM Demo

Applet from libsvm

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

B. Leibe
Summary: SVMs

• Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/
Summary: SVMs

- Limitations
 - How to select the right kernel?
 - Best practice guidelines are available for many applications
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $y(x)$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 ⇒ There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used
Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification

- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels

- Analysis
 - VC dimensions
 - Error function

- Applications
Recap: Kernels Fulfilling Mercer’s Condition

- **Polynomial kernel**
 \[k(x, y) = (x^T y + 1)^p \]

- **Radial Basis Function kernel**
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 e.g. Gaussian

- **Hyperbolic tangent kernel**
 \[k(x, y) = \tanh(\kappa x^T y + \delta) \]
 e.g. Sigmoid

(and many, many more...)

Actually, that was wrong in the original SVM paper...
VC Dimension for Polynomial Kernel

- Polynomial kernel of degree p:
 $$k(x, y) = (x^Ty)^p$$

- Dimensionality of \mathcal{H}:
 $$\binom{D + p - 1}{D}$$

- Example:
 $$D = 16 \times 16 = 256$$
 $$p = 4$$
 $$\dim(\mathcal{H}) = 183.181.376$$

- The hyperplane in \mathcal{H} then has VC-dimension
 $$\dim(\mathcal{H}) + 1$$
VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:

\[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]

- In this case, \(\mathcal{H} \) is infinite dimensional!

\[\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots \]

- Since only the kernel function is used by the SVM, this is no problem.

- The hyperplane in \(\mathcal{H} \) then has VC-dimension

\[\dim(\mathcal{H}) + 1 = \infty \]
VC Dimension for Gaussian RBF Kernel

- Intuitively
 - If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.

- However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.
Example: RBF Kernels

- Decision boundary on toy problem

RBF Kernel width (σ)

Image source: B. Schoelkopf, A. Smola, 2002
But... but... but...

- Don’t we risk overfitting with those enormously high-dimensional feature spaces?
 - No matter what the basis functions are, there are really only up to N parameters: $a_1, a_2, ..., a_N$ and most of them are usually set to zero by the maximum margin criterion.
 - The data effectively lives in a low-dimensional subspace of H.

- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?
 - Yes, but the maximum margin classifier “magically” solves this.
 - Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension.
 - Empirically, SVMs have very good generalization performance.
Theoretical Justification for Maximum Margins

• **Gap Tolerant Classifier**
 - Classifier is defined by a ball in \(\mathbb{R}^d \) with diameter \(D \) enclosing all points and two parallel hyperplanes with distance \(M \) (the margin).
 - Points in the ball are assigned class \{-1, 1\} depending on which side of the margin they fall.

• **VC dimension of this classifier depends on the margin**
 - \(M \leq \frac{3}{4} D \) \(\Rightarrow \) 3 points can be shattered
 - \(\frac{3}{4} D < M < D \) \(\Rightarrow \) 2 points can be shattered
 - \(M \geq D \) \(\Rightarrow \) 1 point can be shattered

\(\Rightarrow \) By maximizing the margin, we can minimize the VC dimension
Theoretical Justification for Maximum Margins

• For the general case, Vapnik has proven the following:
 - The class of optimal linear separators has VC dimension h bounded from above as
 \[h \leq \min \left\{ \left\lfloor \frac{D^2}{\rho^2} \right\rfloor, m_0 \right\} + 1 \]
 where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_0 is the dimensionality.

• Intuitively, this implies that regardless of dimensionality m_0 we can minimize the VC dimension by maximizing the margin ρ.

• Thus, complexity of the classifier is kept small regardless of dimensionality.
Topics of This Lecture

- **Support Vector Machines (Recap)**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification

- **Nonlinear Support Vector Machines**
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels

- **Analysis**
 - VC dimensions
 - Error function

- **Applications**
SVM - Analysis

- **Traditional soft-margin formulation**
 \[
 \min_{\mathbf{w} \in \mathbb{R}^D, \xi_n \in \mathbb{R}^+} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n \right\}
 \]
 subject to the constraints
 \[
 t_n y(\mathbf{x}_n) \geq 1 - \xi_n
 \]

- **Different way of looking at it**
 - We can reformulate the constraints into the objective function.
 \[
 \min_{\mathbf{w} \in \mathbb{R}^D} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \left[1 - t_n y(\mathbf{x}_n) \right]_+ \right\}
 \]

 where \([x]_+ := \max\{0, x\}\).

 - "Maximize the margin"
 - "Most points should be on the correct side of the margin"

 - \(\mathbf{w}\)
 - \(\xi_n\)
 - \(t_n y(\mathbf{x}_n)\)

 - \(\mathbb{R}^D\)
 - \(\mathbb{R}^+\)

 - \(C\)
 - \(N\)

 - \([1 - t_n y(\mathbf{x}_n)]_+\)

 - \(\|\mathbf{w}\|^2\)

 - \(\mathbf{w}\)

 - \(X\)

 - \(n\)

 - \(C\)

 - \(N\)

 - \(x\)

 - \([x]_+\)

 - \(C\)

 - \(N\)
Recap: Error Functions

\[t_n \in \{-1, 1\} \]

- **Ideal misclassification error function (black)**
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - \(\Rightarrow \) We cannot minimize it by gradient descent.

\[z_n = t_n y(x_n) \]

Image source: Bishop, 2006
Recap: Error Functions

\[t_n \in \{-1, 1\} \]

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - \(\Rightarrow\) Generally does not lead to good classifiers.

\[z_n = t_n y(x_n) \]

Ideal misclassification error
Squared error

Sensitive to outliers!

Penalizes "too correct" data points!

Image source: Bishop, 2006
Error Functions (Loss Functions)

- **“Hinge error” used in SVMs**
 - Zero error for points outside the margin ($z_n > 1$) \Rightarrow sparsity
 - Linear penalty for misclassified points ($z_n < 1$) \Rightarrow robustness
 - Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly.

Ideal misclassification error
Squared error
Hinge error

Robust to outliers!
Not differentiable!

$z_n = t_n y(x_n)$
SVM - Discussion

• SVM optimization function

\[
\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{n=1}^{N} [1 - t_n y(\mathbf{x}_n)]_+
\]

L₂ regularizer \hspace{2cm} Hinge loss

• Hinge loss enforces sparsity
 ➢ Only a subset of training data points actually influences the decision boundary.
 ➢ This is different from sparsity obtained through the regularizer! There, only a subset of input dimensions are used.
 ➢ Unconstrained optimization, but non-differentiable function.
 ➢ Solve, e.g. by subgradient descent
 ➢ Currently most efficient: stochastic gradient descent

Slide adapted from Christoph Lampert
Topics of This Lecture

• Support Vector Machines (Recap)
 ➢ Lagrangian (primal) formulation
 ➢ Dual formulation
 ➢ Soft-margin classification

• Nonlinear Support Vector Machines
 ➢ Nonlinear basis functions
 ➢ The Kernel trick
 ➢ Mercer’s condition
 ➢ Popular kernels

• Analysis
 ➢ VC dimensions
 ➢ Error function

• Applications

Example Application: Text Classification

• Problem:
 - Classify a document in a number of categories

• Representation:
 - “Bag-of-words” approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features

• This was one of the first applications of SVMs
 - T. Joachims (1997)
Example Application: Text Classification

Results:

<table>
<thead>
<tr>
<th></th>
<th>Bayes</th>
<th>Rocchio</th>
<th>C4.5</th>
<th>k-NN</th>
<th>SVM (poly) degree $d =$</th>
<th>SVM (rbf) width $\gamma =$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>earn</td>
<td>95.9</td>
<td>96.1</td>
<td>96.1</td>
<td>97.3</td>
<td>98.2</td>
<td>98.4</td>
</tr>
<tr>
<td>acq</td>
<td>91.5</td>
<td>92.1</td>
<td>85.3</td>
<td>92.0</td>
<td>92.6</td>
<td>94.6</td>
</tr>
<tr>
<td>money-fx</td>
<td>62.9</td>
<td>67.6</td>
<td>69.4</td>
<td>78.2</td>
<td>66.9</td>
<td>72.5</td>
</tr>
<tr>
<td>grain</td>
<td>72.5</td>
<td>79.5</td>
<td>89.1</td>
<td>82.2</td>
<td>91.3</td>
<td>93.1</td>
</tr>
<tr>
<td>crude</td>
<td>81.0</td>
<td>81.5</td>
<td>75.5</td>
<td>85.7</td>
<td>86.0</td>
<td>87.3</td>
</tr>
<tr>
<td>trade</td>
<td>50.0</td>
<td>77.4</td>
<td>59.2</td>
<td>77.4</td>
<td>69.2</td>
<td>75.5</td>
</tr>
<tr>
<td>interest</td>
<td>58.0</td>
<td>72.5</td>
<td>49.1</td>
<td>74.0</td>
<td>69.8</td>
<td>63.3</td>
</tr>
<tr>
<td>ship</td>
<td>78.7</td>
<td>83.1</td>
<td>80.9</td>
<td>79.2</td>
<td>82.0</td>
<td>85.4</td>
</tr>
<tr>
<td>wheat</td>
<td>60.6</td>
<td>79.4</td>
<td>85.5</td>
<td>76.6</td>
<td>83.1</td>
<td>84.5</td>
</tr>
<tr>
<td>corn</td>
<td>47.3</td>
<td>62.2</td>
<td>87.7</td>
<td>77.9</td>
<td>86.0</td>
<td>86.5</td>
</tr>
<tr>
<td>microavg.</td>
<td>72.0</td>
<td>79.9</td>
<td>79.4</td>
<td>82.3</td>
<td>84.2</td>
<td>85.1</td>
</tr>
</tbody>
</table>

Combined: **86.0**

B. Leibe
Example Application: Text Classification

- This is also how you could implement a simple spam filter...

![Diagram showing the process of text classification and spam filtering.]

- **Incoming email** → **Dictionary** → **Word activations** → **SVM** → **Mailbox** → **Trash**
Example Application: OCR

- Handwritten digit recognition
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms
Historical Importance

- **USPS benchmark**
 - 2.5% error: human performance

- **Different learning algorithms**
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

- **Different SVMs**
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - 4.1% error: Gaussian kernel (σ=0.3, 291 support vectors)
Example Application: OCR

- Results
 - Almost no overfitting with higher-degree kernels.

<table>
<thead>
<tr>
<th>degree of polynomial</th>
<th>dimensionality of feature space</th>
<th>support vectors</th>
<th>raw error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>282</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>≈ 33000</td>
<td>227</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>$\approx 1 \times 10^6$</td>
<td>274</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>$\approx 1 \times 10^9$</td>
<td>321</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>$\approx 1 \times 10^{12}$</td>
<td>374</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>$\approx 1 \times 10^{14}$</td>
<td>377</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>$\approx 1 \times 10^{16}$</td>
<td>422</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Example Application: Object Detection

• Sliding-window approach

 E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

[Dalal & Triggs, CVPR 2005]
Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
Many Other Applications

- Lots of other applications in all fields of technology
 - OCR
 - Text classification
 - Computer vision
 - ...
 - High-energy physics
 - Monitoring of household appliances
 - Protein secondary structure prediction
 - Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
Topics of This Lecture

• Support Vector Machines (Recap)
 ➢ Lagrangian (primal) formulation
 ➢ Dual formulation
 ➢ Soft-margin classification
 ➢ Nonlinear Support Vector Machines

• Analysis
 ➢ VC dimensions
 ➢ Error function

• Applications

• Extensions
 ➢ One-class SVMs
Summary: SVMs

• Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/
Summary: SVMs

- Limitations
 - How to select the right kernel?
 - Requires domain knowledge and experiments...
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $y(x)$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 ⇒ There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used
You Can Try It At Home…

• Lots of SVM software available, e.g.
 ➢ svmlight (http://svmlight.joachims.org/)
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,…

 ➢ libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,…

 ➢ Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, …
 ⇒ Easy to apply to your own problems!
References and Further Reading

• More information on SVMs can be found in Chapter 7.1 of Bishop’s book. You can also look at Schölkopf & Smola (some chapters available online).

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

 B. Schölkopf, A. Smola
 Learning with Kernels
 MIT Press, 2002
 http://www.learning-with-kernels.org/

• A more in-depth introduction to SVMs is available in the following tutorial: