Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Analysis
 - VC dimensions
 - Error function
- Applications

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - Up to now: consider linear classifiers
- Formulation as a convex optimization problem
 - Find the hyperplane satisfying
 \[\text{arg min}_{w,b} \frac{1}{2} ||w||^2 \]
 - under the constraints
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]
 - based on training data points \(x_n \) and target values \(t_n \in \{-1, 1\} \).

Recap: SVM - Primal Formulation

- Lagrangian primal form
 \[
 L_p = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\}
 \]
 \[
 = \frac{1}{2} ||w||^2 - \sum_{n=1}^{N} a_n \left\{ t_n y(x_n) - 1 \right\}
 \]
- The solution of \(L_p \) needs to fulfill the KKT conditions
 - Necessary and sufficient conditions
 \[a_n \geq 0, \quad \lambda \geq 0 \]
 \[t_n y(x_n) - 1 \geq 0, \quad f(x) \geq 0 \]
 \[a_n \{ t_n y(x_n) - 1 \} = 0, \quad \lambda f(x) = 0 \]

Recap: SVM - Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Sparse solution: \(a_n \neq 0 \) only for some points, the support vectors
 - Only the SVs actually influence the decision boundary!
- Compute \(b \) by averaging over all support vectors:
 \[b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_m^T x_n \right) \]
Recap: SVM - Support Vectors

- The training points for which \(a_n > 0 \) are called "support vectors".
- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 ⇒ All other data points can be discarded!

Recap: SVM - Dual Formulation

- Maximize

\[
L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m)
\]

under the conditions

\[
\sum_{n=1}^{N} a_n t_n = 0 \quad \forall t_n \geq 0
\]

- Comparison
 - \(L_d \) is equivalent to the primal form \(L_p \) but only depends on \(a_n \).
 - \(L_p \) scales with \(O(D^3) \).
 - \(L_d \) scales with \(O(N^3) \) – in practice between \(O(N^2) \) and \(O(N) \).

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.

SVM - Non-Separable Data

- Non-separable data
 - I.e. the following inequalities cannot be satisfied for all data points
 - Instead use

\[
\begin{align*}
w^T x_n + b &\geq +1 \quad \text{for } t_n = +1 \\
w^T x_n + b &\leq -1 \quad \text{for } t_n = -1
\end{align*}
\]

- We do not have to set the slack variables ourselves!
 ⇒ They are jointly optimized together with \(w \).

SVM - Soft-Margin Classification

- Slack variables
 - One slack variable \(\xi_n \geq 0 \) for each training data point.
- Interpretation
 - \(\xi_n = 0 \) for points that are on the correct side of the margin.
 - \(\xi_n = y_n - y(x_n) \) for all other points (linear penalty).
 ⇒ We do not have to set the slack variables ourselves!
 ⇒ They are jointly optimized together with \(w \).
SVM - New Primal Formulation

- New SVM Primal: Optimize
 \[L_p = \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n (t_n y(x_n) - 1 + \xi_n) - \sum_{n=1}^{N} \mu_n \xi_n \]

 \[t_n y(x_n) \geq 1 - \xi_n \]

- KKT conditions
 \[a_n \geq 0 \quad \mu_n \geq 0 \]
 \[\xi_n \geq 0 \]
 \[\lambda \geq 0 \]

- This is again a quadratic programming problem

SVM - New Dual Formulation

- New SVM Dual: Maximize
 \[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_n^T x_m) \]

 under the conditions
 \[0 \cdot a_n \cdot C \]
 \[\sum_{n=1}^{N} a_n t_n = 0 \]

- This is again a quadratic programming problem

 \[\Rightarrow \text{Solve as before... (more on that later)} \]

Interpretation of Support Vectors

- Those are the hard examples!
 \[\Rightarrow \text{We can visualize them, e.g. for face detection} \]

Topics of This Lecture

- Support Vector Machines (Recap)
 \- Lagrangian (primal) formulation
 \- Dual formulation
 \- Soft-margin classification

- Nonlinear Support Vector Machines
 \- Nonlinear basis functions
 \- The Kernel trick
 \- Mercer’s condition
 \- Popular kernels

- Analysis
 \- VC dimensions
 \- Error function

- Applications

So Far...

- Only looked at linearly separable case...
 \- Current problem formulation has no solution if the data are not linearly separable!
 \- Need to introduce some tolerance to outlier data points.

- Only looked at linear decision boundaries...
 \- This is not sufficient for many applications.
 \- Want to generalize the ideas to non-linear boundaries.
Nonlinear SVM

- Linear SVMs
 - Datasets that are linearly separable with some noise work well:

 ![Linear SVM Example](slide.png)

 - But what are we going to do if the dataset is just too hard?

 ![Linear SVM Example](slide.png)

 - How about... mapping data to a higher-dimensional space:

 ![Linear SVM Example](slide.png)

Another Example

- Non-separable by a hyperplane in 2D

 ![Another Example](slide.png)

Another Example

- Separable by a surface in 3D

 ![Another Example](slide.png)

Nonlinear SVM - Feature Spaces

- General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

 ![Nonlinear SVM - Feature Spaces](slide.png)

What Could This Look Like?

- Example:

 ![What Could This Look Like?](slide.png)

 - Motivation: Easier to separate data in higher-dimensional space.

 - But wait - isn’t there a big problem?

 How should we evaluate the decision function?
Problem with High-dim. Basis Functions

- **Problem**
 - In order to apply the SVM, we need to evaluate the function
 \[y(x) = w^T \phi(x) + b \]
 - Using the hyperplane, which is itself defined as
 \[w = \sum_{n=1}^{N} a_n \phi(x_n) \]

 \[\Rightarrow \text{What happens if we try this for a million-dimensional feature space } \phi(x)? \]
 - Oh-oh...

- **Important observation**
 - \(\phi(x) \) only appears in the form of dot products \(\phi(x)^T \phi(y) \):
 \[y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} a_n \phi(x_n)^T \phi(x) + b \]
 - Trick: Define a so-called kernel function \(k(x,y) = \phi(x)^T \phi(y) \).
 - Now, in place of the dot product, use the kernel instead:
 \[y(x) = \sum_{n=1}^{N} a_n k(x_n, x) + b \]
 - The kernel function implicitly maps the data to the higher-dimensional space (without having to compute \(\phi(x) \) explicitly!)

Solution: The Kernel Trick

SVMs with Kernels

- **Using kernels**
 - Applying the kernel trick is easy. Just replace every dot product by a kernel function...
 - \(x^T y \rightarrow k(x,y) \)
 - ...and we're done.
 - Instead of the raw input space, we're now working in a higher-dimensional (potentially infinite dimensional!) space, where the data is more easily separable.
 - "Sounds like magic..."

- **Wait - does this always work?**
 - The kernel needs to define an implicit mapping to a higher-dimensional feature space \(\phi(x) \).
 - When is this the case?

Which Functions are Valid Kernels?

- **Mercer’s theorem (modernized version):**
 - Every positive definite symmetric function is a kernel.

- **Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:**

 \[
 K = \begin{bmatrix}
 k(x_1, x_1) & k(x_1, x_2) & \cdots & k(x_1, x_N) \\
 k(x_2, x_1) & k(x_2, x_2) & \cdots & k(x_2, x_N) \\
 \vdots & \vdots & \ddots & \vdots \\
 k(x_N, x_1) & k(x_N, x_2) & \cdots & k(x_N, x_N)
 \end{bmatrix}
 \]

 (positive definite \(\Rightarrow \) all eigenvalues are > 0)

Kernels Fulfilling Mercer’s Condition

- **Polynomial kernel**
 \[k(x,y) = (x^T y + 1)^p \]

- **Radial Basis Function kernel**
 \[k(x,y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \quad \text{e.g. Gaussian} \]

- **Hyperbolic tangent kernel**
 \[k(x,y) = \tanh(\alpha x^T y + \delta) \quad \text{e.g. Sigmoid} \]

 (and many, many more...)

\[\text{Slide credit: Ben Schiele} \]

\[\text{Slide credit: Bernt Schiele} \]
Example: Bag of Visual Words Representation

- General framework in visual recognition
 - Create a codebook (vocabulary) of prototypical image features
 - Represent images as histograms over codebook activations
 - Compare two images by any histogram kernel, e.g., χ^2 kernel

Nonlinear SVM - Dual Formulation

- SVM Dual: Maximize
 $$L_\alpha(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m)$$
 under the conditions
 $$\sum_{n=1}^{N} a_n t_n = 0$$
- Classify new data points using
 $$y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b$$

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g., graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks – e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use – e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

Summary: Limitations

- How to select the right kernel?
 - Best practice guidelines are available for many applications
- How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
- Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g., SMO.
- Speed of evaluation
 - Evaluating $y(x)$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - There are techniques to reduce the effective SV set.
- Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used

Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Analysis
 - VC dimensions
 - Error function
- Applications
Recap: Kernels Fulfilling Mercer’s Condition

- Polynomial kernel
 \[k(x, y) = (x^T y + 1)^p \]
- Radial Basis Function kernel
 \[k(x, y) = \exp\left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \text{ e.g. Gaussian} \]
- Hyperbolic tangent kernel
 \[k(x, y) = \tanh(\cdot x^T y + \beta) \text{ e.g. Sigmoid} \]

(And many, many more…)

Actually, that was wrong in the original SVM paper...

VC Dimension for Polynomial Kernel

- Polynomial kernel of degree \(p \):
 \[k(x, y) = (x^T y)^p \]
 - Dimensionality of \(\mathcal{H} \): \(\frac{D + p - 1}{p} \)
 - Example: \(D = 16 \times 16 = 256 \)
 \(p = 4 \)
 \(\dim(\mathcal{H}) = 183.181.376 \)
 - The hyperplane in \(\mathcal{H} \) then has VC-dimension
 \(\dim(\mathcal{H}) + 1 = \infty \)

VC Dimension for Gaussian RBF Kernel

- Radial Basis Function:
 \[k(x, y) = \exp\left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 - In this case, \(\mathcal{H} \) is infinite dimensional!
 \[\exp(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots \]
 - Since only the kernel function is used by the SVM, this is no problem.
 - The hyperplane in \(\mathcal{H} \) then has VC-dimension
 \(\dim(\mathcal{H}) + 1 = \infty \)

- Intuitively
 - If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.
 - However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.

Example: RBF Kernels

- Decision boundary on toy problem

But… but… but…

- Don’t we risk overfitting with those enormously high-dimensional feature spaces?
 - No matter what the basis functions are, there are really only up to \(N \) parameters: \(a_1, a_2, \ldots, a_N \) and most of them are usually set to zero by the maximum margin criterion.
 - The data effectively lives in a low-dimensional subspace of \(\mathcal{H} \).
- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?
 - Yes, but the maximum margin classifier “magically” solves this.
 - Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension.
 - Empirically, SVMs have very good generalization performance.
Theoretical Justification for Maximum Margins

- Gap Tolerant Classifier
 - Classifier is defined by a ball in \(\mathbb{R}^d \) with diameter \(D \) enclosing all points and two parallel hyperplanes with distance \(M \) (the margin).
 - Points in the ball are assigned class \([-1,1]\) depending on which side of the margin they fall.
 - VC dimension of this classifier depends on the margin
 - \(M \leq 3/4D \Rightarrow 3 \) points can be shattered
 - \(3/4D < M < D \Rightarrow 2 \) points can be shattered
 - \(M > D \Rightarrow 1 \) point can be shattered
 - By maximizing the margin, we can minimize the VC dimension

- For the general case, Vapnik has proven the following:
 - The class of optimal linear separators has VC dimension \(h \) bounded from above as
 \[
 h \leq \min \left\{ \frac{D^2}{\rho^2}, \frac{m_M}{\rho^2} \right\} + 1
 \]
 where \(\rho \) is the margin, \(D \) is the diameter of the smallest sphere that can enclose all of the training examples, and \(m_M \) is the dimensionality.
 - Intuitively, this implies that regardless of dimensionality \(m_M \) we can minimize the VC dimension by maximizing the margin \(\rho \).
 - Thus, complexity of the classifier is kept small regardless of dimensionality.

Recap: Error Functions

- \(t_n \subset \{-1,1\} \) Ideal misclassification error
- \(E(\xi_n) \) Ideal misclassification error function (black)
 - This is what we want to approximate,
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.
- \(t_n \subset \{-1,1\} \) Squared error
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes “too correct” data points
 - Generally does not lead to good classifiers.

SVM - Analysis

- Traditional soft-margin formulation
 - Lagrangian (primal) formulation
 \[
 \min_{w \in \mathbb{R}^d, \xi_n \in \mathbb{R}^+} \frac{1}{2} \|w\|^2 + C \sum_{n=1}^N \xi_n
 \]
 subject to the constraints
 \[
 t_n y_n(x_n) \geq 1 - \xi_n
 \]
 - “Maximize the margin”
 - “Most points should be on the correct side of the margin”
 - Different way of looking at it
 - We can reformulate the constraints into the objective function.
 \[
 \min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + C \sum_{n=1}^N \left(1 - t_n y_n(x_n) \right)_+ \]
 where \([x]_+ := \max(0,x) \).
 - \(L_2 \) regularizer
 - “Hinge loss”

Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Analysis
 - VC dimensions
 - Error function
- Applications
Error Functions (Loss Functions)

- "Hinge error" used in SVMs
 - Zero error for points outside the margin ($z_n > 1$) ⇒ sparsity
 - Linear penalty for misclassified points ($z_n < 1$) ⇒ robustness
 - Not differentiable around $z_n = 1$ ⇒ Cannot be optimized directly

Image source: Bishop, 2006

SVM - Discussion

- SVM optimization function
 \[
 \min_{w \in \mathbb{R}^D} \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \max(1 - t_n y_n(x_n), 0)
 \]
- Hinge loss enforces sparsity
 - Only a subset of training data points actually influences the decision boundary.
 - This is different from sparsity obtained through the regularizer!
 - There, only a subset of input dimensions are used.
 - Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by subgradient descent
 - Currently most efficient: stochastic gradient descent

Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels
- Analysis
 - VC dimensions
 - Error function
- Applications

Example Application: Text Classification

- Problem:
 - Classify a document in a number of categories

- Representation:
 - "Bag-of-words" approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features

- This was one of the first applications of SVMs
 - T. Joachims (1997)
Example Application: OCR

- Handwritten digit recognition
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms

Results
- Almost no overfitting with higher-degree kernels.

<table>
<thead>
<tr>
<th>degree of polynomial</th>
<th>dimensionality of feature space</th>
<th>support vectors</th>
<th>raw error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>282</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>≈ 33000</td>
<td>227</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>≈ 1 x 10^6</td>
<td>274</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>≈ 1 x 10^9</td>
<td>321</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>≈ 1 x 10^12</td>
<td>374</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>≈ 1 x 10^14</td>
<td>377</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>≈ 1 x 10^16</td>
<td>422</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Historical Importance

- USPS benchmark
 - 2.5% error: human performance
- Different learning algorithms
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network
- Different SVMs
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - 4.1% error: Gaussian kernel \((p=0.3, 291 \text{ support vectors})\)

Example Application: Object Detection

- Sliding-window approach
 - E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

Example Application: Pedestrian Detection

Many Other Applications

- Lots of other applications in all fields of technology
 - OCR
 - Text classification
 - Computer vision
 - ...
 - High-energy physics
 - Monitoring of household appliances
 - Protein secondary structure prediction
 - Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - Dual formulation
 - Soft-margin classification
 - Nonlinear Support Vector Machines
- Analysis
 - VC dimensions
 - Error function
- Applications
- Extensions
 - One-class SVMs

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g., graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks
 - e.g., SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied whenever dot products are in use
 - e.g., Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

- Limitations
 - How to select the right kernel?
 - Requires domain knowledge and experiments...
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g., SMO.
 - Speed of evaluation
 - Evaluating \(y(x) \) scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used

You Can Try It At Home...

- Lots of SVM software available, e.g.
 - svmlight (http://svmlight.joachims.org/)
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,...
 - libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C, .NET,...
 - Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 - Easy to apply to your own problems!

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop’s book. You can also look at Schölkopf & Smola (some chapters available online).

- A more in-depth introduction to SVMs is available in the following tutorial: