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Nonlinear SVMs
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Topics of This Lecture

¢ Support Vector Machines (Recap)
» Lagrangian (primal) formulation
» Dual formulation
» Soft-margin classification

¢ Nonlinear Support Vector Machines
» Nonlinear basis functions
» The Kernel trick
> Mercer’s condition
» Popular kernels

¢ Analysis
» VC dimensions
» Error function

¢ Applications

B. Leibe
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RWTH ACHET
Recap: SVM - Primal Formulation

¢ Lagrangian primal form

N
1
L, = 5 IIw||? — Zan {tn(wan +0b) — 1}
n=1

1 N
= S IWl* = an {tay(xn) 13
n=1

* The solution of L, needs to fulfill the KKT conditions
» Necessary and sufficient conditions

KKT:
a, > 0 A >0
bay(xa) =1 > 0 1) = 0
an {tny(xn) —1} = 0 Af(x) = 0

B. Leibe
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Course Outline

¢ Fundamentals (2 weeks)
~ Bayes Decision Theory
» Probability Density Estimation

¢ Discriminative Approaches (5 weeks)
» Linear Discriminant Functions
» Statistical Learning Theory & SVMs

» Ensemble Methods & Boosting
» Randomized Trees, Forests & Ferns

¢ Generative Models (4 weeks)
» Bayesian Networks
» Markov Random Fields

B. Leibe
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Recap: Support Vector Machine (SVM)

¢ Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points. b

> Up to now: consider linear classifiers

wix+b=0

+ Formulation as a convex optimization problem
» Find the hyperplane satisfying
R S
arg min — |(|w,
gmin 3w
under the constraints
to(Wix, +0) >1 V¥n

based on training data points x,, and target values ¢,, € {717 1}.
6
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Recap: SVM - Solution

¢ Solution for the hyperplane
» Computed as a linear combination of the training examples

N
w = E antnXy
n=1

-~ Sparse solution: a, # 0 only for some points, the support vectors
= Only the SVs actually influence the decision boundary!

» Compute b by averaging over all support vectors:

b= Ni.s Z tn — Z amtmxﬁxn

nes meS

B. Leibe
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Recap: SVM - Support Vectors

¢ The training points for which a, > 0 are called
“support vectors”.

¢ Graphical interpretation:

» The support vectors are the * .
points on the margin. @_‘

© . They define the margin R *
5 and thus the hyperplane. o W
=
E .
23 = All other data points can 2
=z be discarded! .
t ®,
© s,
3 Origin N
2 ¢ o> 7
i o Margin|
= 9

Slide adapted from Bernt Schiele B. Leibe Jmage source: C, Burges, 199
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So Far...

» Current problem formulation has no
solution if the data are not linearly
separable!

> Need to introduce some tolerance to
outlier data points.

Machine Learning, Summer ‘16

B. Leibe

SVM - Soft-Margin Classification

¢ Slack variables
~ One slack variable £, > 0 for each training data point.

¢ Interpretation
» &, = 0 for points that are on the correct side of the margin.
» &, = [t, — y(x,)| for all other points (linear penalty).

Point on decision
boundary: ¢, = 1

Misclassified point:
§>1

~ We do not have to set the slack variables ourselves!
= They are jointly optimized together with w.

5
B. Leibe
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Recap: SVM - Dual Formulation
¢ Maximize
N 1NN
_ T
Ld(a) = Zl ap — 3 Zl Zlanamtntm(xmxn)
under the conditions
a, > 0 Vn

N
Zantn =0
n=1

e Comparison
» L, is equivalent to the primal form L,,
» L, scales with O(D?).
» L, scales with O(N®) - in practice between O(N) and O(N?).

but only depends on a,,.

Slide adapted from Bernt Schiele B. Leibe

SVM - Non-Separable Data

¢ Non-separable data
» l.e. the following inequalities cannot be satisfied for all data

points
wix, +b>+1 for t, =+1
wix, +b- —1 for t,=-1
» Instead use

wanererlf.fn for t,=+1
wix, +b: —1+¢&, for t,=-1

with “slack variables” &, >0 Vn

B. Leibe
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RWTH/ACHEN
SVM - Non-Separable Data
o Sepa.rf'ib.le data 1 9 Trade-off
» Minimize 5 HW” parameter!

* Non-separable data |
. Minimize 5 [Iw|

N
D¢
n=1

B. Leibe
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SVM - New Primal Formulation SVM - New Dual Formulation
¢ New SVM Primal: Optimize ¢ New SVM Dual: Maximize
N N N
1
= WP +C D 6 =D an (tay(xn) =1+ &) = > tnén La(@) =) an— = OnGmtnton (X Xn
Sl Z Z Zu a() ; 2;; (X Xn)
H_/
Constraint Constraint s
tny(xn) >1-¢, £, >0 under the conditions This is all
e B e 0- an- C that changed!
E ¢ KKT conditions E N
£ KKT: £ apt, = 0
g tay(xp) —1+& > 0 &n > fx) >0 £ " ) o
8 B . s ) is is again a quadratic programming problem
L -1 = = = o
Té an (tny(xn) * §n) 0 Hn&n M) 0 Té = Solve as before... (more on that later)
17 18
B. Leibe ide adapted from Bernt Schiele B. Leibe
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SVM - New Solution Interpretation of Support Vectors

e Solution for the hyperplane
» Computed as a linear combination of the training examples

¢ Those are the hard examples!
> We can visualize them, e.g. for face detection

N
NON-FACES
w = E aptnX - 0 O
ntnin O O 0 oo ‘\
n=1 F‘ noo oo

m ¥ TEgt O
© » Again sparse solution: a, = 0 for points outside the margin. © B 0o_
] = The slack points with £, > 0 are now also support vectors! 5 | E M. o
: £ SR
@ - Compute b by averaging over all NV, points with 0 < a,, < C: @ &
2 = w Eo
E - g IR
8 N E E AmtmX,, Xn § > = Eﬂ‘
o o s
£ nem meM £ § o
S S “FACES i o
-] S
H =

20
Image source: E, Osuna, F. Girosi, 1997
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Topics of This Lecture So Far...

Only looked at linearly separable case...
Current problem formulation has no
solution if the data are not linearly
separable! L
Need to introduce some tolerance to

¢ Nonlinear Support Vector Machines outlier data points

> Nonlinear basis functions
» The Kernel trick

» Mercer’s condition

» Popular kernels

= Slack variables.

¢ Only looked at linear decision boundaries...
» This is not sufficient for many applications.

» Want to generalize the ideas to non-linear y
boundaries. 4
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Nonlinear SVM

e Linear SVMs
» Datasets that are linearly separable with some noise work well:

©

&

|
o x

» But what are we going to do if the dataset is just too hard?

0 X

» How about... mapping data to a higher-dimensional space:

Slide credit: Raymond Moone, B. Leibe

Another Example

¢ Separable by a surface in 3D

ide credit: Bill Freeman

Nonlinear SVM

¢ General idea
~ Nonlinear transformation ¢ of the data points x,,:

xeRP ¢:RP 5 H
» Hyperplane in higher-dim. space # (linear classifier in #)

wlpx)+b=0

= Nonlinear classifier in R”.

Slide credit: Bernt Schiele LA
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Another Example
¢ Non-separable by a hyperplane in 2D
[ ] L ]
L N ) °
°
€ .. L ]
° o® o
: °® : °o0 X
o L Py ) ‘ "
o X,
® o
[ ]
o o ¢° A
e o
o 0 &
® L]
L ] 27
ide credit: Bill Freeman
RWTH CHE

Nonlinear SVM - Feature Spaces

¢ General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

r . % .

ide credit: Ravmond Moone:
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What Could This Look Like?

e Example:
» Mapping to polynomial space, x, y € RZ

08
2 0.6
1 04
d(x) = | V2z13s | 02
3 0

7 -

[rye— ey

04 O g 05

T
» Motivation: Easier to separate data in higher-dimensional space.
» But wait - isn’t there a big problem?

- How should we evaluate the decision function?

31
Image source: C, Burges, 190
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Problem with High-dim. Basis Functions

¢ Problem
> In order to apply the SVM, we need to evaluate the function

y(x) = W (x) +b

» Using the hyperplane, which is itself defined as

N
w :Z antn¢(xn)
n=1

= What happens if we try this for a million-dimensional
feature space ¢(x)?
. Oh-oh...

Machine Learning, Summer ‘16

B. Leibe

Back to Our Previous Example...

¢ 2nd degree polynomial kernel:

2 2

Ty Y1
d(x)"o(y) = | Va2z122 || V2172

3 Y3

=23y} + 2z Ty + T35

= (x"y)? = k(x,y)

- Whenever we evaluate the kernel function k(x,y) = (xy)?, we
implicitly compute the dot product in the higher-dimensional
feature space.

Machine Learning, Summer ‘16

34

B. Leibe lmage source: C. Burges, 199
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Which Functions are Valid Kernels?

-
¢ Mercer’s theorem (modernized version):

. Every positive definite symmetric function is a kernel. €34

¢ Positive definite symmetric functions correspond to a
positive definite symmetric Gram matrix:

©

!; ko) | kOax) | k(xaxs) Kx%q)

£ KOGx) | kOGx) | KOkxs) KO X,)

3

? -

& K=

£

c

£

= KOGXg) | kOGiXa) | k(X Xa) k(X0 Xs)

c

£

é (positive definite = all eigenvalues are > 0)

36

Slide credit: Ravmond Moone: B. Leibe

Solution: The Kernel Trick

¢ Important observation
» ¢(x) only appears in the form of dot products ¢(x)"é(y):

y(x) = wTo(x)+b

> antnd(xn)Th(x) + b

n=1

. Trick: Define a so-called kernel function k(x,y) = ¢(x)T¢(y).

» Now, in place of the dot product, use the kernel instead:
N
y(X) = Z antnk(xmx) +b
n=1

» The kernel function implicitly maps the data to the higher-
dimensional space (without having to compute ¢(x) explicitly)!

Machine Learning, Summer ‘16

33
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SVMs with Kernels

¢ Using kernels
» Applying the kernel trick is easy. Just replace every dot product
by a kernel function...
T
x'y — k(xy)
» ..and we’re done.

» Instead of the raw input space, we’re now working in a higher-
dimensional (potentially infinite dimensional!) space, where the
data is more easily separable.

“Sounds like magic...”

¢ Wait - does this always work?

» The kernel needs to define an implicit mapping
to a higher-dimensional feature space ¢(x).

» When is this the case?

Machine Learning, Summer ‘16

B. Leibe
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Kernels Fulfilling Mercer’s Condition

¢ Polynomial kernel
k(x,y) = (xTy +1)F

¢ Radial Basis Function kernel

% —v)2
k(x, Y) = exp {—%} e.g. Gaussian

¢ Hyperbolic tangent kernel

k(x, yM e.g. Sigmoid

Actually, this was wrong in
the original SVM paper...
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(and many, many more...)

ide credit: Bernt Schiele B. Leibe
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Example: Bag of Visual Words Representation

¢ General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
» Compare two images by any histogram kernel, e.g. x2 kernel

1 (hy — hl)?
Fa(h, W) =exp | — J !

O X ! o) Z hy + Rt
= 1 i !
I3

=

E

>

a

-]

=

c

5 | {
3

3

=

=

o

L]

= 8

Slide adapted from Christoph | ampert B. Leibe
SVM Demo
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§ Applet from libsvm
= (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) 0

B. Leibe

Summary: SVMs

¢ Limitations
» How to select the right kernel?
- Best practice guidelines are available for many applications
> How to select the kernel parameters?
- (Massive) cross-validation.
- Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
- Standard QP solvers do not perform too well on SVM task.
- Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
- Evaluating y(x) scales linearly in the number of SVs.
- Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
» Training for very large datasets (millions of data points)
- Stochastic gradient descent and other approximations can be used 42

B. Leibe
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Nonlinear SVM - Dual Formulation

¢ SVM Dual: Maximize
N N N

v
Ly(a) = Z a, — %Z Z anmtntm k(X %,)

n=1 n=1m=1
under the conditions

0- a,- C
N
Z antn =0
n=1
¢ Classify new data points using

N
y(x) = Zant-p.A'(XiJ-X}+b

n=1

Machine Learning, Summer ‘16
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Summary: SVMs

¢ Properties
Empirically, SVMs work very, very well.
SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.
SVM techniques have been applied to a variety of other tasks
- e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of
applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...

- Good overview, software, and tutorials available on
http://www.kernel-machines.org/

v

v

v

v

v

Machine Learning, Summer ‘16
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Topics of This Lecture

¢ Analysis
» VC dimensions
» Error function
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Recap: Kernels Fulfilling Mercer’s Condition
¢ Polynomial kernel

k(x,y) = (x"y + 1)

« Radial Basis Function kernel

% —v)2
k(x,y) = exp {—%} e.g. Gaussian

« Hyperbolic tangent kernel

k(x, y) = Tty =] _

Actually, that was wrong in
the original SVM paper...

e.g. Sigmoid

(and many, many more...)

44
Slide credit: Bernt Schiele B. Leibe

RWTHACEN
VC Dimension for Gaussian RBF Kernel

¢ Radial Basis Function:

) = e { - E 20

202

» In this case, # is infinite dimensional!
1 x %2 x"
exp(x) = +ﬁ+i+"'+m+”'

» Since only the kernel function is used by the SVM, this is no
problem.

» The hyperplane in H then has VC-dimension
dim(H) +1=00

" 46
B. Leibe
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Example: RBF Kernels

¢ Decision boundary on toy problem

RBF Kernel width (o)

48

B. Leibe Jmage source: B Schoelkopf A, Smola, 200

RWTH/CET
VC Dimension for Polynomial Kernel

¢ Polynomial kernel of degree p:
k(x,y) = (x"y)

» Dimensionality of #: (D+§71>
» Example: D = 16 x 16 = 256
p =4
dim(#H) = 183.181.376

» The hyperplane in H then has VC-dimension
dim(H) +1

Machine Learning, Summer ‘16

45

B. Leibe
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VC Dimension for Gaussian RBF Kernel

o Intuitively

» If we make the radius of the RBF kernel sufficiently small, then
each data point can be associated with its own kernel.

» However, this also means that we can get finite VC-dimension if
we set a lower limit to the RBF radius.

Machine Learning, Summer ‘16

47

Image source; C, Burge:

B. Leibe
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But... but... but...

¢ Don’t we risk overfitting with those enormously high-
dimensional feature spaces?
» No matter what the basis functions are, there are really only up
to N parameters: a,, a,,..., ay and most of them are usually set
to zero by the maximum margin criterion.

» The data effectively lives in a low-dimensional subspace of H.

¢ What about the VC dimension? | thought low VC-dim was
good (in the sense of the risk bound)?
» Yes, but the maximum margin classifier “magically” solves this.

» Reason (Vapnik): by maximizing the margin, we can reduce the
VC-dimension.

» Empirically, SVMs have very good generalization performance.
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Theoretical Justification for Maximum Margins

¢ Gap Tolerant Classifier Lo J—

- Classifier is defined by a ball in VRS VAN
R? with diameter D enclosing all s o
points and two parallel hyperplanes
with distance M (the margin). M
Points in the ball are assigned =) /
class {-1,1} depending on which - 1
side of the margin they fall. =1

v

=0
¢ VC dimension of this classifier depends on the margin
» M<3/4D = 3 points can be shattered
» 3/4D <M< D = 2points can be shattered
» M>D = 1 point can be shattered
= By maximizing the margin, we can minimize the VC dimension

B. Leibe

Image source: C, Burge:
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Topics of This Lecture
¢ Analysis
» VC dimensions
» Error function
B. Leibe 53
RWTH ACHET

Recap: Error Functions

Ideal misclassification error]

bo{ 11} E(z.)

Not differentiable! ——

2 - o’ 7 3" #n = tny(xn)

¢ |deal misclassification error function (black)
» This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.

= We cannot minimize it by gradient descent. 55
lmage source: Bishop, 2009

RWTH/ T
Theoretical Justification for Maximum Margins

¢ For the general case, Vapnik has proven the following:
» The class of optimal linear separators has VC dimension h
bounded from above as 2
. || D
h< mlnﬂ—zw, m, p+1
P
where p is the margin, D is the diameter of the smallest sphere

that can enclose all of the training examples, and m, is the
dimensionality.

¢ Intuitively, this implies that regardless of dimensionality
m, we can minimize the VC dimension by maximizing the
margin p.

¢ Thus, complexity of the classifier is kept small
regardless of dimensionality.

Machine Learning, Summer ‘16

Slide credit: Raymond Moone: B. Leibe
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SVM - Analysis
¢ Traditional soft-margin formulation
N
. 1 2 “Maximize
weRD, g ert 2 ™+ C; & the margin”

subject to the constraints

“Most points should
thy(x,) = 1-¢,

be on the correct
side of the margin”|

« Different way of looking at it
» We can reformulate the constraints into the objective function.

N
. 1 2
i s iw]® +C Y[ = tay(xn)],
—
L, regularizer
where [z], := max{0,z}.

n=1

“Hinge loss”

Machine Learning, Summer ‘16

ide adapted from Christoph | ampert B. Leibe
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Recap: Error Functions

FE ['z.,,) Ideal misclassification error]
t, C{ 1,1} ;
B Squared error

Sensitive to outliers!

Penalizes “too correct”
data points!

2 - 0 — [ tny(xn)

e Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points

= Generally does not lead to good classifiers. 56
lmage source: Bishop, 2004
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sparsity
» Linear penalty for misclassified points (2, < 1) = robustness
> Not differentiable around >, = 1 = Cannot be optimized directlyz

=
B.Leibe Jmage source: Bishop, 2001

Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

RWTH/ACHEN RWTH/ACHEN
Error Functions (Loss Functions) SVM - Discussion
E[:z.,,) Isdeal misclassification error] * SVM optimization function
quared error N
Hinge error 1
. 2
min - |[w C 1—tyy(x
Robust to outliers! weRD 2 H ” + Z:l [ ny( 77)]+
— n=
L, regularizer Hinge loss
8 t « Hinge loss enforces sparsit
™ Not differentiable! Favors sparse 5 g Sparsty :
= \ ) solutions! g » Only a subset of training data points actually influences the
= ‘ E decision boundary.
3 > 2 = tny(Xn) 3
':., -2 -1 0 hd " neAT ':, » This is different from sparsity obtained through the regularizer!
E « “Hinge error” used in SVMs E There, only a subset of input dimensions are used.
© ©
3 ~ Zero error for points outside the margin (z, > 1) = S » Unconstrained optimization, but non-differentiable function.
3 o
8 8
= H

v

ide adapted from Christoph lampert B. Leibe
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Topics of This Lecture Example Application: Text Classification
¢ Problem:
» Classify a document in a number of categories
D ?
H
© =N * Representation:
5 5 » “Bag-of-words” approach
E E » Histogram of word counts (on learned dictionary)
a a - Very high-dimensional feature space (~10.000 dimensions)
g 2 - Few irrelevant features
5 e
@ o . . . .
J =1 * This was one of the first applications of SVMs
c c B
4| * Applications £ » T. Joachims (1997)
© o
= =
B. Leibe 59 B. Leibe 60
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Example Application: Text Classification Example Application: Text Classification
e Results: e This is also how you could implement a simple spam
SUM (poly) SVM (7b) filter...
degree d = width v =
Bayes|Rocchio C4.5-NN|| 1 [ 2 [ 3 | 4 | 5 |osos|10]12
(carn 95.9 | 96.1_]96.1]97.3 |[98.2[08.4[08.5]0R.4 | 98.3 |[98.5]98.5| 98.4] 98.3 \E
acq 91.5 | 92.1 [B5.3]|92.0 ||92.6|94.6/95.2|05.2 | 95,3 || 95.0 [95.3| 95.3|05.4 o
money-fx || 62.9 | 67.6 [69.4]78.2 [[66.9[72.5]75.4|74.9(76.2][74.0|75.1|76.3| 75.9 Dictionary g
CN  [grain 725 | 79.5 |89.1]82.2 [91.3]93.1/92.4|91.3|59.9[93.1/91.5/91.9|90.6 e l Mailb
W fcrude ®1.0 | 815 [75.5) 85.7 ||36.0[57.3| 85.6 |88.9] 7.8 ||88.9|39.0] 88.0 | 58.2 o ailbox
I [trade 50.0 | 77.4_[59.2] 77.4 ||69.2|75.5| 76.6|77.3|77.1]| 76.9 |78.0]77.8| 76.8 £ r— SVM
| |interest [[58.0 [ 725 [49.1]74.0 |[69.8]63.3|67.9|73.1|76.2|| 74.4 |75.0]76.2] 76.1 E
ZN  [ship 78.7 | B3.1 |80.9]79.2 |[82.0[85.4] 86.0|86.5|86.0 | 85.4|86.5|87.6 |87 1 2 .,
2 [wheat 606 | 794 |85.5] 766 |[53.1]84.5[85.2 [85.0]83.5 |[85.2(85.585.9[85.9 2 Incoming email Word activations ==
E corn 47.3 | 62.2 7.7 | 77.9 ||86.0[86.5|85.3 [85.7T|83.9||85.1|85.7(85.7 |84.5 E
3 - 84.2[85.1[85.986.2] 85.9 || 86.4[86.5] 86.3 | 86.2 g
i} -
o [ il 20| 79.9 [79.4)82.3 H combined: 86.0 combined: 86.4 @ =
£ £
é é Trash
B. Leibe o1 B. Leibe 62
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Example Application: OCR Historical Importance

Se e
®rcise e 2
U

" Handwritten digit e e eabaik s
it PIBETLLIE

recognition 3351 6338.6328422 231R0AI012
T ageL]

e USPS benchmark

» 2.5% error: human performance
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« Different learning algorithms
» 16.2% error: Decision tree (C4.5)
> 5.9% error: (best) 2-layer Neural Network
> 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

« Different SVMs

» 4.0% error: Polynomial kernel (p=3, 274 support vectors)
> 4.1% error: Gaussian kernel (¢=0.3, 291 support vectors)
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RWTH CHE RWTH CHE
Example Application: OCR Example Application: Object Detection
¢ Results o Slldlng -window approach c"Pe btm,e
» Almost no overfitting with higher-degree kernels. Vs
degree of || dimensionality of | support | raw
polynornial feature space vectors | error —| Obj./non-obj.
1 256 282 8.9 Classifier
2 2 A2 33000 227 4.7 2
= 3 1% 108 274 4.0 E
£ 4 &1 x 10° 321 4.2 £
7] 12 12}
& 5 =1x 10 374 4.3 = . .
E 6 a1 x 10 377 45 E ¢ E.g. histogram representation (HOG)
3 7 w1 % 1016 499 4.5 3 . Map each grid cell in the input window to a
e @ histogram of gradient orientations.
§ '§ » Train a linear SVM using training set of
= o5 = pedestrian vs. non-pedestrian windows.
B. Leibe [Dalal & Triggs, CVPR 2005’
RWTH ACHET RWTH ACHET

Example Application: Pedestrian Detection Many Other Applications

¢ Lots of other applications in all fields of technology
» OCR
» Text classification
» Computer vision

» High-energy physics

» Monitoring of household appliances

» Protein secondary structure prediction

» Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
http://www.learning-with-kernels.org/

Topics of This Lecture

¢ Extensions
» One-class SVMs

Machine Learning, Summer ‘16

B. Leibe

Summary: SVMs

¢ Limitations
» How to select the right kernel?
- Requires domain knowledge and experiments...
> How to select the kernel parameters?
- (Massive) cross-validation.
- Usually, several parameters are optimized together in a grid search.
» Solving the quadratic programming problem
- Standard QP solvers do not perform too well on SVM task.
- Dedicated methods have been developed for this, e.g. SMO.
» Speed of evaluation
- Evaluating y(x) scales linearly in the number of SVs.
- Too expensive if we have a large number of support vectors.
= There are techniques to reduce the effective SV set.
» Training for very large datasets (millions of data points)
- Stochastic gradient descent and other approximations can be used

Machine Learning, Summer ‘16

B. Leibe

RWTH/ACHEN
References and Further Reading

¢ More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop

Pattern Recognition and Machine Learning
Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002

. http://www.learning-with-kernels.org/

¢ A more in-depth introduction to SVMs is available in the
following tutorial:

» C. Burges, A Tutorial on Support Vector Machines for Pattern
Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.
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Summary: SVMs

¢ Properties
Empirically, SVMs work very, very well.
SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.
SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.
SVM techniques have been applied to a variety of other tasks
- e.g. SV Regression, One-class SVMs, ...
The kernel trick has been used for a wide variety of
applications. It can be applied wherever dot products are in use
- e.g. Kernel PCA, kernel FLD, ...

- Good overview, software, and tutorials available on
http://www.kernel-machines.org/
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You Can Try It At Home...

¢ Lots of SVM software available, e.g.
» svmlight (http://svmlight.joachims.org/)
- Command-line based interface
- Source code available (in C)
- Interfaces to Python, MATLAB, Perl, Java, DLL,...

» libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
- Library for inclusion with own code
- C++ and Java sources
- Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

» Both include fast training and evaluation algorithms, support for
multi-class SVMs, automated training and cross-validation, ...
= Easy to apply to your own problems!

B. Leibe
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