Machine Learning - Lecture 8

Linear Support Vector Machines
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Course Outline

A Fundamentals (2 weeks)
. Bayes Decision Theory
. Probability Density Estimation

A Discriminative Approaches (5 weeks)
« Linear Discriminant Functions
. Statistical Learning Theory & SVMs
« Ensemble Methods & Boosting
« Randomized Trees, Forests & Ferns

A Generative Models (4 weeks)
. Bayesian Networks
: Markov Random Fields
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RWTH
Recap: Generalization and Overfitting

A

test error

training error

_I —————————————————————————

A Goal: predict class labels of new observations
. Train classification model on limited training set.

. The further we optimize the model parameters, the more the
training error will decrease.

« However, at some point the test error will go up again.
Y Overfitting to the training set!

B. Leibe
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Recap: Risk

A Empirical risk

: Measured on the training/validation set
1 X!
Remp(®) - T L(yi;f (Xi;®))
=1
A Actual risk (= Expected risk)

. Expectation of the error on all data.

R(® = L(yi;f (X;®)dPx .y (X;Y)

« Px:y (X;Y) is the probability distribution of (X,y).
It is fixed, but typically unknown.
Y In general, we can’t compute the actual risk directly!
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RWNTH
Recap: Statistical Learning Theory

A Idea

« Compute an upper bound on the actual risk based on the
empirical risk

R(®) - Remp(®) + 2(N; p*; h)

a where

N: number of training examples
P : probability that the bound is correct

h: capacity of the learning machine (“VC-dimension”)
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Recap: VC Dimension

A Vapnik-Chervonenkis dimension Exer(fgz
« Measure for the capacity of a learning machine. 2.3

A Formal definition:

. Ifagivensetof  oints can be labeled in all possible wz2,‘ 3
and for each labeling, a member of the set  {f(®)} can be found

which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

« The VC dimension for the set of functions {f(®)} is defined as
the maximum number of training points that can be shattered

by {T(®)}.
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VC Dimension

A Interpretation as a two-player game
. Opponent’s turn: He says a number N.

« Our turn: We specify a set of N points {X,, éXy}.
» Opponent’s turn: He gives us a labeling {x,, éx,}2 {0,1}N

« Our turn: We specify a function f (®) which correctly
classifies all N points.

Y If we can do that for all 2N possible labelings, then the VC
dimension is at least N.
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VC Dimension

A Example
. The VC dimension of all oriented lines in R? is 3.
1. Shattering 3 points with an oriented line:

o) L O ®
° 0] o ®

2. More difficult to show: it is not possible to shatter 4 points (XOR)...

s More general: the VC dimension of all hyperplanes in R" is n+1.
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VC Dimension

A Intuitive feeling (unfortunately wrong)

« The VC dimension has a direct connection with the number of
parameters.

A Counterexample

f(x;®) = g(an(&x))

£ 1 x>0
= g(x) = .
= i1, x- 0
&
g « Just a single parameter ®.
S : Infinite VC dimension N
= 3 Proof: Choose  Xj = 10''; i=1;:::;°
= X (17 v)10
2 10
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Upper Bound on the Risk

A Important result (Vapnik 1979, 1995)
«  With probability (1-" ), the following bound holds

h(log(2N=h) + 1) ; log(" =4)
N

— _/
V

“VC confidence”

R(®) ' Remp(®) +

: This bound is independent of Py .y (X;VY)!
. Typically, we cannot compute the left-hand side (the actual risk)

. If we know h (the VC dimension), we can however easily
compute the risk bound

R(®) - Remp(®) + 2(N; p*; h)
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Upper Bound on the Risk

Guaranteed risk
(bound on generalization

-—
-—
h--_-__‘

Error C?l?;g::lw 2(N ; pc; h)

Training Rem ) (®)

€rror

0 VC dimension, h

Slide credit: Bernt Schiele B. Leibe
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RWTH
Recap: Structural Risk Minimization

A How can we implement Structural Risk Minimization?

R(®) - Remp(®) + 2(N; p*; h)

A Classic approach
. Keep 2(N;p"; h) constant and minimize Remp (®) .

» 2(N;p"; h) can be kept constant by controlling the model
parameters.

A Support Vector Machines (SVMs)
. Keep Remp(®) constant and minimize 2(N;p“; h).
s In fact: Remp(®) = O for separable data.

. Control?(N;p~;h) by adapting the VC dimension
(controlling the “capacity” of the classifier).

Slide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

A Linear Support Vector Machines
« Lagrangian (primal) formulation
. Dual formulation
« Discussion

A Linearly non-separable case
. Soft-margin classification
« Updated formulation

A Nonlinear Support Vector Machines
s Nonlinear basis functions
« The Kernel trick
« Mercer’s condition
. Popular kernels

A Applications

B. Leibe
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Revisiting Our Previous Example...

A How to select the classifier with o @

the best generalization performance? ® o® ®
. Intuitively, we would like to select

the classifier which leaves maximal
“safety room” for future data points.

s This can be obtained by maximizing the
margin between positive and negative
data points.

. It can be shown that the larger the margin, the lower the
corresponding classifier’s VC dimension.

16

A The SVM takes up this idea

. It searches for the classifier with maximum margin.

« Formulation as a convex optimization problem
Y Possible to find the globally optimal solution!
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Support Vector Machine (SVM)

A Let’s first consider linearly separable data
: N training data points  (X; ;yi)g!\': 1 Xi?2 R

. Target values ti 21 1,19

. Hyperplane separating the data
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Support Vector Machine (SVM)

A Margin of the hyperplane: di + d.

s d,: distance to nearest pos.
training example

« d,: distance to nearest neg. ™.
training example ‘

~
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c 101 N

: Origin ® /

- I .

g Ol Margin

<

g : We can always choose w, bsuch that d, = d, = —.

= kwk .
B. Leibe
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RWTH
Support Vector Machine (SVM)

A Since the data is linearly separable, there exists a
hyperplane with

wix,+b, +1 for t,=+1
wix,+b- j1 for t, =1

16

A Combined in one equation, this can be written as
th(Ww'xp+b) . 1 8n

Y Canonical representation of the decision hyperplane.
« The equation will hold exactly for the points

on the margin T
th(iw'x,+b =1

. By definition, there will always be at least
one such point.
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Support Vector Machine (SVM)

A We can choose w such that
W'x,+b=+1 forone t, = +1

W' x,+b=il forone t, =il
A The distance between those two hyperplanes is then the
margin 1
di = d; = I
2

Y We can find the hyperplane with maximal margin by
minimizing kwk?,

- 24
Slide credit: Bernt Schiele B. Leibe
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Support Vector Machine (SVM)

A Optimization problem
. Find the hyperplane satisfying

1
argmin ~kwk?
Wb 2
under the constraints

th(W'xp+b) . 1 8n

« Quadratic programming problem with linear constraints.

« Can be formulated using Lagrange multipliers.

A Who is already familiar with Lagrange multipliers?
. Let’s look at a real-life example...

B. Leibe
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Recap: Lagrange Multipliers

A Problem

. We want to maximize K (X) subject to constraints f (x) = 0.

« Example: we want to get as close as
possible, but there is a fence.

s«  How should we move?

f(X)= 0 T

. We want to maximize! K .

s But we can only move parallel
to the fence, i.e. along

ryiKk=rK+ rf
with . 0.
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Recap: Lagrange Multipliers

A Problem

. We want to maximize K (X) subject to constraints f (x) = 0.

« Example: we want to get as close as
possible, but there is a fence.

s«  How should we move?
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Recap: Lagrange Multipliers

A Problem

. Now let’s look at constraints of the form f(x) . O.

« Example: There might be a hill from
which we can see better...

« Optimize maxL(x;, )= K(x)+  f(x)
X;,

. Solution lies on boundary
Y f(x)=0forsome 6 >0
 Solution lies inside f(x) > 0

Y Constraint inactive: |, = 0

« In both cases
Y f(x)=0
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Recap: Lagrange Multipliers

A Problem

. Now let’s look at constraints of the form f(x) . O.

« Example: There might be a hill from
which we can see better...

« Optimize maxL(x;, )= K(x)+  f(x)
X,,

f(X) = 0_ 3~ Karush-Kuhn-Tucker (KKT)
conditions:, , O
A Two cases f(x) . O
. Solution lies on boundary * f(x) =0

Y f(x)=0forsome 6 >0
. Solution lies inside f(x) >0

Y Constraint inactive: | =

« In both cases
Y f(x)=0
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A Lagrangian formulation

B. Leibe

. Introduce positive Lagrange multipliers:

s Minimize Lagrangian (“primal form”)

© T
an th(W'xp+bij 1l

Q _
@y

= 1,

£ L(w;ba) = - kwk* j

> 2

» n=1
g « l.e., find w, b, and a such that
X

g % =0) anth, = 0O

§ n=1

=

SVM - Lagrangian Formulation

an ,

0)

0

8n

A Find hyperplane minimizingkvvkzunder the constraints
th(w'xp+bj 1, 0 8n

a

30



SVM - Lagrangian Formulation

A Lagrangian primal form

X © a
L, = Ekwkzi a, th(W'x,+bj 1
2 n=1
1, o, X
= szk i an fthy(Xn)i 19
n=1

A The solution of L, needs to fulfill the KKT conditions
« Necessary and sufficient conditions

KKT:
a.n 5 O O
thy(Xn)i 1, O f(x) . O
an ftny(xn)i 1g = O () = 0
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SVM - Solution (Part 1)

A Solution for the hyperplane
« Computed as a linear combination of the training examples

X
W = antan

n=1

. Because of the KKT conditions, the following must also hold

anltn(WTXn+b)i 1 =0 bf(KxK)T::O

« This implies that a, > O only for training data points for which
| b 4
th(w'xp+bj1=0

Y Only some of the data points actually influence the decision
boundary!
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RWTH
SVM - Support Vectors

A The training points for which a, > 0 are called “support
vectors”.

A Graphical interpretation:

« The support vectors are the
points on the margin.

« They define the margin

o I/I\4/Iargin

33
Image source: C. Burges, 199¢€
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SVM - Solution (Part 2)

A Solution for the hyperplane
. To define the decision boundary, we still need to know b.
« Observation: any support vector X , satisfies

X KKT:
t,V(Xn) = tq AntmX Xn+b =1 [f(X), 0
m2S
s Using tﬁ = 1, we can derive: b= t, j ; amthLXn
m23S
. In practice, it is more robust to average over all support vectors:
1 X X .
b= N th i A tm X Xn
> n2s m2s

_ 34
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SVM - Discussion (Part 1)

A Linear SVM

« Linear classifier
. Approximative implementation of the SRM principle.

« In case of separable data, the SVM produces an empirical risk of
zero with minimal value of the VC confidence
(i.e. a classifier minimizing the upper bound on the actual risk).

« SVMs thus have a “guaranteed” generalization capability.
s Formulation as convex optimization problem.
Y Globally optimal solution!

16

A Primal form formulation
: Solution to quadratic prog. problem in M variables is in O(M3).
. Here: D variables Y O(D?3)
« Problem: scaling with high-dim. data (“curse of dimensionality”)
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RWNTH
SVM - Dual Formulation

A Improving the scaling behavior: rewrite L , in a dual form

1 2 X © T °
Lpzzkwk i an th(w' xp+bijl
n=1
1 2 T X X
:kaki apty W xnibﬁ/aﬂ+ an

; n=1 =1 n=1
=
S XV @
” . Using the constraint a,ty, = O, we obtain =P -0
g’ n=1 @
% —_ 1 2 . T X\I
- Ly, = Zka | antaW' X, + an
= n=1 n=1
3

36
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SVM - Dual Formulation
X X

Slide adapted from Bernt Schiele

1
L, = 5 kwk? i antow' xp, + an
n=1 n=1
X Q
. Using the constraint W = anth Xn , we obtain —P=0
n=1 @V
N X X
L, = 5 kwk? anth A tm X1 X + an
n=1 m=1 n=1
PR R ) X
= 5 kwk* j anam thtm (X Xn) + dn
n=1m=1 n=1
| 37
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SVM - Dual Formulation

1 N X
L = 5 kwk? ; anamtntm (X5 Xn) + an
nN=1m=1 n=1
1 1 X
« Applying 5 kwk?= zWTW and again using W = anthXn
n=1
1 . 11X X .
§W W= — anamtntm (X, Xn)
n=1m=1
. Inserting this, we get the Wolfe dual
X xR )
La(a) = an | 5 anam thtm (XmXn)
n=1 n=1m=1
B. Leibe

Slide adapted from Bernt Schiele
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SVM - Dual Formulation

A Maximize

X U,
Lq(a) = ani = 8nam tntm (X! Xn)
n=1 n=1m=1

under the conditions
- aZ ., 0 8n
. X
= at, = 0
(23 n=1
% « The hyperplane is given by the N g support vectors:
- X
= W= anthXn
s n=1

Slide adapted from Bernt Schiele B. Leibe



SVM - Discussion (Part 2)

A Dual form formulation
« In going to the dual, we now have a problem in N variables (a,).
o Isn’t this worse??? We penalize large training sets!

A However...
1. SVMs have sparse solutions: a, , O only for support vectors!

Y This makes it possible to construct efficient algorithms
0 e.g. Sequential Minimal Optimization (SMO)
d Effective runtime between O(N) and O(N?).

16

2. We have avoided the dependency on the dimensionality.

Y This makes it possible to work with infinite-dimensional feature
spaces by using suitable basis functions A(X).

Y We'll see that in a few minutes...
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So Far...
A Only looked at linearly separable case... o ®© Margin?
s Current problem formulation has no ®
solution if the data are not linearly
separable! ®

s Need to introduce some tolerance to
outlier data points.

. 43
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SVM - Non-Separable Data

A Non-separable data

. l.e. the following inequalities cannot be satisfied for all data
points

wix,+b, +1 for t,=+1

wix,+b- j1 for t, =1
« Instead use

Wix,+b, +1j » for ty=+1

wWix,+b- j1+» for t,

|

with “slack variables” », , O 8n
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SVM - Soft-Margin Classification

A Slack variables
« One slack variable », , O for each training data point.

A Interpretation
« », = 0 for points that are on the correct side of the margin.
o », = |t, T y(X,)| for all other points (linear penalty).

Point on decision
boundary: », =1

Misclassified point:
» >1

® o
s« We do not have to set the slack variables ourselves!

Y They are jointly optimized together with w.
15
B. Leibe
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SVM - Non-Separable Data

A Separable data 1

Trade-off
« Minimize z k\Nk2 parameter!
A Non-separable data 1
:  Minimize _ kwk? + n
u 2
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SVM - New Primal Formulation

A New SVM Primal: Optimize
X X X

1
Ly, = ik"""2+c i an (thy(Xn) i 1+ )i Lo
n=1 n=1 L, 0=t y
Const?aint Con:traint
thy(Xn), 1i » , O
= A KKT conditions
= KKT:
7)) an 5 O 1n 5 O O
£ thy(Xn)i 1+» . O m o, 0 1 f(x) . 0
S @ (tay(xn)i 1+ m) = 0 Iom = 0 |, f(x) = 0
=

_ 47
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Slide adapted from Bernt Schiele

SVM - New Dual Formulation

A New SVM Dual: Maximize
X DU
Lq(a) = an | =

n=1 nN=1m=1

8nam tntm (X! Xn)

under the conditions

This is all
)(\IO - C that changed!

anthb, = O
n=1

A This is again a quadratic programming problem
Y Solve as before... (more on that later)

B. Leibe
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SVM - New Solution

A Solution for the hyperplane
« Computed as a linear combination of the training examples

X!

n=1
. Again sparse solution: a, = O for points outside the margin.
Y The slack points with » > 0 are now also support vectors!

. Compute bby averaging over all N, points with0< a, < C:

X .. ¥ T
No th i Am tm X Xn
M
nz2M m2M

b=

B. Leibe
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Interpretation of Support Vectors

A Those are the hard examples!
« We can visualize them, e.g. for face detection

NON-FACES

[]
— -t 1“‘~ D I:I
-7 . D
£ 3 = M. :
= O Lo B m-o
> () J '
% O 0 O \Q O - .
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Image source: E. Osuna, F. Girosi, 1997



RWTH
References and Further Reading

A More information on SVMs can be found in Chapter 7.1
of Bishop’s book. You can also look at Scholkopf & Smola
(some chapters available online).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Scholkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

A A more in-depth introduction to SVMs is available in the
following tutorial:
. C. Burges, A Tutorial on Support Vector Machines for Pattern

Recognition, Data Mining and Knowledge Discovery, Vol. 2(2),
pp. 121-167 1998.
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