Machine Learning - Lecture 7
Statistical Learning Theory
23.05.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Course Outline
- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Topics of This Lecture
- Recap: Generalized Linear Discriminants
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on error functions
- Statistical Learning Theory
 - Generalization and overfitting
 - Empirical and actual risk
 - VC dimension
 - Empirical Risk Minimization
 - Structural Risk Minimization

Recap: Linear Discriminant Functions
- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.
- Linear discriminant functions
 \[y(x) = w^T x + w_0 \]
 - weight vector
 - "bias" (= threshold)
 - If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Extension to Nonlinear Basis Fcts.
- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):
 \[y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0} \]
- Advantages
 - Transformation allows non-linear decision boundaries.
 - By choosing the right \(\phi_j \), every continuous function can (in principle) be approximated with arbitrary accuracy.
- Disadvantage
 - The error function can in general no longer be minimized in closed form.
 \[\Rightarrow \] Minimization with Gradient Descent

Recap: Basis Functions
- Generally, we consider models of the following form
 \[y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) = w^T \phi(x) \]
 - where \(\phi_j(x) \) are known as basis functions.
 - In the simplest case, we use linear basis functions: \(\phi_j(x) = x_j \).
- Other popular basis functions
 - Polynomial
 - Gaussian
 - Sigmoid
Iterative minimization

- Start with an initial guess for the parameter values \(w_0\).
- Move towards a (local) minimum by following the gradient.

Basic strategies

- "Batch learning" \(w_{k,j}^{(r+1)} = w_{k,j}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{k,j}} |_{w(w)}\)
- "Sequential updating" \(w_{k,j}^{(r+1)} = w_{k,j}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{k,j}} |_{w(w)}\)

Where \(E(w) = \sum_{n=1}^{N} E_n(w)\)

Logistic sigmoid (logit function)

\[y(x_n; w) = \frac{1}{1 + e^{-w^T x_n}} \]

Sequential updating leads to delta rule (LMS rule)

\[w_{k,j}^{(r+1)} = w_{k,j}^{(r)} - \eta \delta_{kn} \phi_j(x_n) \]

Where \(\delta_{kn} = y_k(x_n; w) - t_{kn} \)

→ Simply feed back the input data point, weighted by the classification error.

Gradient descent

- Cases with differentiable, non-linear activation function

\[y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{k,j} \phi_j(x_n) \right) \]

Gradient descent (again with quadratic error function)

\[\frac{\partial E_n(w)}{\partial w_{k,j}} = \frac{\partial g(a_k)}{\partial w_{k,j}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n) \]

\[w_{k,j}^{(r+1)} = w_{k,j}^{(r)} - \frac{\partial E_n(w)}{\partial w_{k,j}} |_{w(w)} \]

\[\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{k,j}} (y_k(x_n; w) - t_{kn}) \]

Recap: Gradient Descent

- Example: Quadratic error function

\[E(w) = \sum_{n=1}^{N} (y(x_n; w) - t_{kn})^2 \]

Recap: Classification as Dim. Reduction

- Consider linear classification as a projection onto a lower-dim. space.

\[y = w^T x \]

→ Learning problem: Try to find the projection vector \(w \) that maximizes class separation.

Recap: Fisher’s Linear Discriminant Analysis

- Maximize distance between classes
- Minimize distance within a class
- Criterion: \(J(w) = \frac{w^T S_B w}{w^T S_W w} \)

\(S_B \) = between-class scatter matrix
\(S_W \) = within-class scatter matrix

- The optimal solution for \(w \) can be obtained as:

\[w = S_B^{-1} (m_2 - m_1) \]

- Classification function:

\[y(x) = w^T x + w_0 \]

\[y(x) \leq 0 \quad \text{Class 1} \]

\[y(x) > 0 \quad \text{Class 2} \]

\[w_0 = -w^T m \]

Topics of This Lecture

- Recap: Generalized Linear Discriminants
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on error functions
- Statistical Learning Theory
 - Generalization and overfitting
 - Empirical and actual risk
 - VC dimension
 - Empirical Risk Minimization
 - Structural Risk Minimization
We have seen that we can write
\[p(C_1|x) = \sigma(a) = \frac{1}{1 + \exp(-a)} \]

We can obtain the familiar probabilistic model by setting
\[a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \]

Or we can use generalized linear discriminant models
\[a = w^T x \text{ or } a = w^T \phi(x) \]

This model is called logistic regression.

Why should we do this? What advantage does such a model have compared to modeling the probabilities?
\[p(C_1|\phi) = y(\phi) = \sigma(w^T \phi) \]

with
\[p(C_2|\phi) = 1 - p(C_1|\phi) \]

Any ideas?

For large M, logistic regression has clear advantages!

Comparison

Let's look at the number of parameters...

- Assume we have an \(M \)-dimensional feature space \(\phi \).
- And assume we represent \(p(\phi|C_1) \) and \(p(\phi|C_2) \) by Gaussians.
- How many parameters do we need?
 - For the means: \(2M \)
 - For the covariances: \(M(M+1)/2 \)
 - Together with the class priors, this gives \(M(M+5)/2+1 \) parameters!
- How many parameters do we need for logistic regression?
 - Just the values of \(w \) \(\Rightarrow \) \(M \) parameters.

Logistic Sigmoid

Properties
- Definition:
 \[\sigma(a) = \frac{1}{1 + \exp(-a)} \]
- Inverse:
 \[a = \ln \left(\frac{\sigma}{1 - \sigma} \right) \]
- Symmetry property:
 \[\sigma(-a) = 1 - \sigma(a) \]
- Derivative:
 \[\frac{d\sigma}{da} = \sigma(1 - \sigma) \]

Logistic Regression

Let's consider a data set \(\{\phi_n, t_n\} \) with \(n = 1, \ldots, N \), where \(\phi_n = \phi(x_n) \) and \(t_n \in \{0, 1\} \), \(t = (t_1, \ldots, t_N)^T \).

With \(y_n = p(C_1|\phi_n) \), we can write the likelihood as
\[p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n} \]

Define the error function as the negative log-likelihood
\[E(w) = -\ln p(t|w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\} \]

This is the so-called cross-entropy error function.

Gradient of the Error Function

Error function
\[y_n = \sigma(w^T \phi_n) \]
\[\frac{dy_n}{dw} = y_n(1-y_n) \phi_n \]
\[E(w) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln (1 - y_n)\} \]

Gradient
\[\nabla E(w) = -\sum_{n=1}^{N} \left\{ t_n \frac{\partial y_n}{\partial y_n} + (1 - t_n) \frac{\partial y_n}{\partial (1 - y_n)} \right\} \phi_n \]
\[= -\sum_{n=1}^{N} \left\{ t_n \frac{1 - y_n}{y_n} \phi_n + (1 - t_n) \frac{y_n}{1 - y_n} \phi_n \right\} \]
\[= \sum_{n=1}^{N} \left\{ (t_n - y_n) \phi_n - y_n + y_n \phi_n \right\} \]
\[= \sum_{n=1}^{N} (y_n - t_n) \phi_n \]
Gradient of the Error Function

- Gradient for logistic regression
 \[\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n \]

- Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule
 \[w_{k+1} = w_k - \eta (y_k(x_n; w) - t_k) \phi_j(x_n) \]
- We can use this to derive a sequential estimation algorithm.
 However, this will be quite slow.

Newton-Raphson for Least-Squares Estimation

- Let’s first apply Newton-Raphson to the least-squares error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (w^T \phi_n - t_n)^2 \]
 \[\nabla E(w) = \sum_{n=1}^{N} (w^T \phi_n - t_n) \phi_n = \Phi^T \Phi w - \Phi^T t \]
 \[H = \nabla^2 E(w) = \sum_{n=1}^{N} \phi_n \phi_n^T = \Phi^T \Phi \]
 where \(\Phi = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_N^T \end{bmatrix} \)
- Resulting update scheme:
 \[w^{(r+1)} = w^{(r)} - (\Phi^T \Phi)^{-1} \Phi^T (y - t) \]
 Closed-form solution!

Iteratively Reweighted Least Squares

- Update equations
 \[w^{(r+1)} = w^{(r)} - (\Phi^T R \Phi)^{-1} \Phi^T (y - t) \]
 \[= (\Phi^T R \Phi)^{-1} (\Phi^T R w^{(r)} - \Phi^T t) \]

 with \(z = \Phi w^{(r)} - R^{-1}(y - t) \)
- Again very similar form (normal equations)
 - But now with non-constant weighting matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
 \(\Rightarrow \text{Iteratively Reweighted Least-Squares (IRLS)} \)

A More Efficient Iterative Method...

- Second-order Newton-Raphson gradient descent scheme
 \[w^{(r+1)} = w^{(r)} - H^{-1} \nabla E(w) \]
 where \(H = \nabla^2 E(w) \) is the Hessian matrix, i.e. the matrix of second derivatives.

- Properties
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.

Newton-Raphson for Logistic Regression

- Now, let’s try Newton-Raphson on the cross-entropy error function:
 \[E(w) = -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \} \]
 \[\frac{\partial E}{\partial w} = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \Phi^T (y - t) \]
 \[H = \nabla^2 E(w) = \sum_{n=1}^{N} y_n (1 - y_n) \phi_n \phi_n^T = \Phi^T R \Phi \]
 where \(R \) is an \(N \times N \) diagonal matrix with \(R_{nn} = y_n (1 - y_n) \).
 \(\Rightarrow \) The Hessian is no longer constant, but depends on \(w \) through the weighting matrix \(R \).

Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(p(\phi | \mathcal{D}) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave.
 Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
 - There is a multi-class version described in (Bishop Ch.4.3.4).

- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than -500.
Topics of This Lecture

- Recap: Generalized Linear Discriminants
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on error functions
- Statistical Learning Theory
 - Generalization and overfitting
 - Empirical and actual risk
 - VC dimension
 - Empirical Risk Minimization
 - Structural Risk Minimization

A Note on Error Functions

$t_n \in \{ -1, 1 \}$

- Ideal misclassification error
 - Not differentiable!
 - We cannot minimize it by gradient descent.

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

A Note on Error Functions

$t_n \in \{ -1, 1 \}$

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - Generally does not lead to good classifiers.

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

- Squared error with sigmoid activation function (tanh)
 - Fixes the problems with outliers and "too correct" data points.
 - But: zero gradient for confidently misclassified data points.
 - Will give better performance than original squared error, but still does not fix all problems.
Goal: predict class labels of new observations
- Train classification model on limited training set.
- The further we optimize the model parameters, the more the training error will decrease.
- However, at some point the test error will go up again.
 \(\Rightarrow \) Overfitting to the training set!

Difficulty: how should the risk be estimated?
However, they will most likely result in different predictions on novel test data.
\(\Rightarrow \) Different generalization performance

Overfitting is often a problem with linearly separable data
- Which of the many possible decision boundaries is correct?
- All of them have zero error on the training set...
- However, they will most likely result in different predictions on novel test data.
 \(\Rightarrow \) Different generalization performance

How to select the classifier with the best generalization performance?

A Broader View on Statistical Learning

- Formal treatment: Statistical Learning Theory
- Supervised learning
 - Environment: assumed stationary.
 - i.e. the data \(x \) have an unknown but fixed probability density \(p_X(x) \)
 - Teacher: specifies for each data point \(x \) the desired classification \(y \) (where \(y \) may be subject to noise).
 \[y = g(x, \nu) \] with noise \(\nu \)
 - Learning machine: represented by class of functions, which produce for each \(x \) an output \(y \):
 \[y = f(x; \alpha) \] with parameters \(\alpha \)

Statistical Learning Theory

- Supervised learning (from the learning machine’s view)
 - Selection of a specific function \(f(x; \alpha) \)
 - Given: training examples \(\{(x_i, y_i)\}_{i=1}^N \)
 - Goal: the desired response \(y \) shall be approximated optimally.

Measuring the optimality
- Loss function
 \[L(y, f(x; \alpha)) \]
 - Example: quadratic loss
 \[L(y, f(x; \alpha)) = (y - f(x; \alpha))^2 \]

Risk

- Measuring the “optimality”
 - Measure the optimality by the risk (= expected loss).
 - Difficulty: how should the risk be estimated?

Practical way
- Empirical risk (measured on the training/validation set)
 \[R_{\text{emp}}(\alpha) = \frac{1}{N} \sum_{i=1}^N L(y_i, f(x_i; \alpha)) \]
 - Example: quadratic loss function
 \[R_{\text{emp}}(\alpha) = \frac{1}{N} \sum_{i=1}^N (y_i - f(x_i; \alpha))^2 \]

Risk

However, what we’re really interested in is
- Actual risk (= Expected risk)
 \[R(\alpha) = \int L(y, f(x; \alpha)) dP_{X,Y}(x, y) \]
 - \(P_{X,Y}(x, y) \) is the probability distribution of \((x,y)\).
 - \(P_{X,Y}(x, y) \) is fixed, but typically unknown.
 \(\Rightarrow \) In general, we can’t compute the actual risk directly!
- The expected risk is the expectation of the error on all data.
 - I.e., it is the expected value of the generalization error.
Summary: Risk

- Actual risk
 - Advantage: measure for the generalization ability
 - Disadvantage: in general, we don’t know $P_{X,Y}(x, y)$
- Empirical risk
 - Disadvantage: no direct measure of the generalization ability
 - Advantage: does not depend on $P_{X,Y}(x, y)$
 - We typically know learning algorithms which minimize the empirical risk.

Statistical Learning Theory

- Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 $$ R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(\alpha, p, h) $$
 - where
 - N: number of training examples
 - p: probability that the bound is correct
 - h: capacity of the learning machine ("VC-dimension")
- Side note:
 - (This idea of specifying a bound that only holds with a certain probability is explored in a branch of learning theory called “Probably Approximately Correct” or PAC Learning).

VC Dimension

- Vapnik-Chervonenkis dimension
 - Measure for the capacity of a learning machine.
 - Formal definition:
 - If a given set of ℓ points can be labeled in all possible 2^ℓ ways, and for each labeling, a member of the set $\{f(\alpha)\}$ can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.
 - The VC dimension for the set of functions $\{f(\alpha)\}$ is defined as the maximum number of training points that can be shattered by $\{f(\alpha)\}$.

VC Dimension

- Example
 - The VC dimension of all oriented lines in \mathbb{R}^2 is 3.
 1. Shattering 3 points with an oriented line:
 ![Shattering 3 points](image)
 2. More difficult to show: it is not possible to shatter 4 points (XOR).
- More general: the VC dimension of all hyperplanes in \mathbb{H}^n is $n+1$.

VC Dimension

- Interpretation as a two-player game
 - Opponent’s turn: He says a number N.
 - Our turn: We specify a set of N points $\{x_1, ..., x_N\}$.
 - Opponent’s turn: He gives us a labeling $\{x_1, ..., x_N\} \in \{0, 1\}^N$
 - Our turn: We specify a function $f(\alpha)$ which correctly classifies all N points.

VC Dimension

- Intuitive feeling (unfortunately wrong)
 - The VC dimension has a direct connection with the number of parameters.
 - Counterexample
 $$ f(x; \alpha) = g(\sin(\alpha x)) $$
 $$ g(x) = \begin{cases}
 1, & x > 0 \\
 -1, & x \leq 0
 \end{cases} $$
 - Just a single parameter α.
 - Infinite VC dimension
 - Proof: Choose $x_i = 10^{-i}$, $i = 1, \ldots, \ell$
 - $\alpha = \pi \left(1 + \sum_{i=1}^{\ell} \frac{(1 - y_i)10^i}{2} \right)$
Upper Bound on the Risk

- Important result (Vapnik 1979, 1995)
 - With probability $(1-\eta)$, the following bound holds
 $$ R(\alpha) \cdot R_{\text{emp}}(\alpha) + \sqrt{\frac{h(\log(2N/h) + 1) - \log(\eta/4)}{N}} $$
 - This bound is independent of $P_{\mathcal{X},\mathcal{Y}}(x,y)$
 - Typically, we cannot compute the left-hand side (the actual risk)
 - If we know h (the VC dimension), we can however easily compute the risk bound
 $$ R(\alpha) \cdot R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) $$

Structural Risk Minimization

- How can we implement this?
 $$ R(\alpha) \cdot R_{\text{emp}}(\alpha) + \epsilon(N, p^*, h) $$

- Classic approach
 - Keep $\epsilon(N, p^*, h)$ constant and minimize $R_{\text{emp}}(\alpha)$.
 - $\epsilon(N, p^*, h)$ can be kept constant by controlling the model parameters.

- Support Vector Machines (SVMs)
 - Keep $R_{\text{emp}}(\alpha)$ constant and minimize $\epsilon(N, p^*, h)$.
 - In fact: $R_{\text{emp}}(\alpha) = 0$ for separable data.
 - Control $\epsilon(N, p^*, h)$ by adapting the VC dimension (controlling the “capacity” of the classifier).

References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop’s book.
- Additional information about Statistical Learning Theory and a more in-depth introduction to SVMs are available in the following tutorial: