Recap: Linear Discriminant Functions

- **Basic idea**
 - Directly encode decision boundary
 - Minimize misclassification probability directly.

- **Linear discriminant functions**

 \[y(x) = w^T x + w_0 \]

 - \(w, w_0 \) define a hyperplane in \(\mathbb{R}^d \).
 - If a dataset can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- **Simplest approach**
 - Directly try to minimize the sum-of-squares error

 \[E(w) = \sum_{i=1}^{N} (y(x_i;w) - t_i)^2 \]

 \[E_D(W) = \frac{1}{2} \text{Tr} \left\{ (XW - T)^T(XW - T) \right\} \]

 - Setting the derivative to zero yields
 \[W = (X^T X)^{-1} X^T T = \frac{1}{N} X^T T \]

 - We then obtain the discriminant function as
 \[y(x) = W^T x = T^T \left(\frac{1}{N} X \right)^T x \]

 \(\Rightarrow \) Exact, closed-form solution for the discriminant function parameters.

Recap: Generalized Linear Models

- **Generalized linear model**
 \[y(x) = g(w^T x + w_0) \]

 - \(g(\cdot) \) is called an activation function and may be nonlinear.
 - The decision surfaces correspond to
 \[y(x) = \text{const.} \iff w^T x + w_0 = \text{const.} \]

 - If \(g \) is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

- **Advantages of the non-linearity**
 - Can be used to bound the influence of outliers and “too correct” data points.
 - When using a sigmoid for \(g(\cdot) \), we can interpret \(y(x) \) as posterior probabilities.
Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

- Classical counterexample: XOR

\[x_2 \]
\[C_2 \]
\[C_1 \]
\[C_1 \]
\[C_2 \]

 Linear Separability

- Even if the data is not linearly separable, a linear decision boundary may still be “optimal”.
 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)

- Choice of the right discriminant function is important and should be based on
 - Prior knowledge (of the general functional form)
 - Empirical comparison of alternative models
 - Linear discriminants are often used as benchmark.

Generalized Linear Discriminants

- Generalization
 - Transform vector \(x \) with \(M \) nonlinear basis functions \(\phi_j(x) \):
 \[y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_k0 \]
 - Purpose of \(\phi_j(x) \): basis functions
 - Allow non-linear decision boundaries.
 - By choosing the right \(\phi_j \), every continuous function can (in principle) be approximated with arbitrary accuracy.

- Notation
 \(y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) \quad \text{with} \quad \phi_0(x) = 1 \)

Generalized Linear Discriminants

- Model
 \[y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) = y_k(x; w) \]
 - \(K \) functions (outputs) \(y_k(x; w) \)
 - Learning in Neural Networks
 - Single-layer networks: \(\phi_j \) are fixed, only weights \(w \) are learned.
 - Multi-layer networks: both the \(w \) and the \(\phi_j \) are learned.

 - In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general.

Gradient Descent

- Learning the weights \(w \):
 - \(N \) training data points: \(X = \{x_1, ..., x_N\} \)
 - \(K \) outputs of decision functions: \(y_k(x; w) \)
 - Target vector for each data point: \(T = \{t_1, ..., t_N\} \)

- Error function (least-squares error) of linear model
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2 \]
 \[= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2 \]

Gradient Descent

- Problem
 - The error function can in general no longer be minimized in closed form.

- Idea (Gradient Descent)
 - Iterative minimization
 - Start with an initial guess for the parameter values \(w_{kj}^{(0)} \)
 - Move towards a (local) minimum by following the gradient.
 \[w_{kj}^{(t+1)} = w_{kj}^{(t)} - \eta \frac{\partial E(w)}{\partial w_{kj}} \bigg|_{w^{(t)}} \]
 \(\eta \): Learning rate

 - This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).
Gradient Descent - Basic Strategies

- **“Batch learning”**
 \[
 w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}}
 \]
 \(\eta\): Learning rate

 - Compute the gradient based on all training data:
 \[
 \frac{\partial E(w)}{\partial w_{kj}}
 \]

- **“Sequential updating”**
 \[
 w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}}
 \]
 \(\eta\): Learning rate

 - Compute the gradient based on a single data point at a time:
 \[
 \frac{\partial E_n(w)}{\partial w_{kj}}
 \]

Gradient Descent

- **Error function**
 \[
 E(w) = \sum_{n=1}^{N} E_n(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2
 \]

 \[
 E_n(w) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2
 \]

 \[
 \frac{\partial E_n(w)}{\partial w_{kj}} = \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right) \phi_j(x_n)
 \]

 \[
 = (y_k(x_n; w) - t_{kn}) \phi_j(x_n)
 \]

Gradient Descent

- **Cases with differentiable, non-linear activation function**
 \[
 y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{kj} \phi_j(x_n) \right)
 \]

- **Gradient descent**
 \[
 \frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n)
 \]

 \[
 \frac{w_{kj}^{(r+1)}}{w_{kj}^{(r)}} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}}
 \] \(\eta\): Learning rate

 \[
 \delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn})
 \]

Summary: Generalized Linear Discriminants

- **Properties**
 - General class of decision functions.
 - Nonlinearity \(g(\cdot)\) and basis functions \(\phi_j\) allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches available (e.g., Newton-Raphson).

- **Limitations / Caveats**
 - Flexibility of model is limited by curse of dimensionality
 - \(g(\cdot)\) and \(\phi_j\) often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.
Topics of This Lecture

- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions

Classification as Dimensionality Reduction

- Classification as dimensionality reduction
 - We can interpret the linear classification model as a projection onto a lower-dimensional space.
 - E.g., take the J-dimensional input vector x and project it down to one dimension by applying the function $y = w^T x$
 - If we now place a threshold at $y \geq -w_0$, we obtain our standard two-class linear classifier.
 - The classifier will have a lower error the better this projection separates the two classes.

\Rightarrow New interpretation of the learning problem

- Try to find the projection vector w that maximizes the class separation.

Classification as Dimensionality Reduction

- Measuring class separation
 - We could simply measure the cross class variance to the within class variance:

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

- Usually, this is written as

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

- where

$S_B = (m_2 - m_1)(m_2 - m_1)^T$

$S_W = \sum_{k=1}^{2} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T$

- This expression can be made arbitrarily large by increasing $\|w\|$. We need to enforce additional constraint $\|w\| = 1$.

- This constrained minimization results in

$w \propto (m_2 - m_1)$

- Problems with this approach
 1. This expression can be made arbitrarily large by increasing $\|w\|$.
 \Rightarrow Need to enforce additional constraint $\|w\| = 1$.
 \Rightarrow This constrained minimization results in $w \propto (m_2 - m_1)$
 2. The criterion may result in bad separation if the clusters have elongated shapes.

Fisher’s Linear Discriminant Analysis (FLD)

- Better idea:
 - Find a projection that maximizes the ratio of the between-class scatter matrix to the within-class scatter matrix:

$$J(w) = \frac{(m_2 - m_1)^2}{s_b^2} = \sum_{k=1}^{2} (y_k - m_k)^2$$

- Usually, this is written as

$$J(w) = w^T S_B w / w^T S_W w$$

- where

$S_B = (m_2 - m_1)(m_2 - m_1)^T$

$S_W = \sum_{k=1}^{2} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T$

- This constrained minimization results in

$$w \propto (m_2 - m_1)$$

- The optimal solution for w can be obtained as:

$w \propto S_W^{-1}(m_2 - m_1)$

- Classification function:

$$y(x) = w^T x + w_0$$

\Rightarrow Classification as dimensionality reduction

- We can interpret the linear classification model as a projection onto a lower-dimensional space.

- E.g., take the J-dimensional input vector x and project it down to one dimension by applying the function $y = w^T x$

- If we now place a threshold at $y \geq -w_0$, we obtain our standard two-class linear classifier.

- The classifier will have a lower error the better this projection separates the two classes.

\Rightarrow New interpretation of the learning problem

- Try to find the projection vector w that maximizes the class separation.
Multiple Discriminant Analysis

- Generalization to \(K \) classes
 \[
 J(W) = \frac{W^T S_B W}{W^T S_W W}
 \]
 where
 \[
 W = [w_1, \ldots, w_K] \quad m = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{N} \sum_{k=1}^{K} N_k m_k
 \]
 \[
 S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T
 \]
 \[
 S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T
 \]

Maximizing \(J(W) \)

- "Rayleigh quotient" \(\Rightarrow \) Generalized eigenvalue problem
 \[
 J(W) = \frac{W^T S_B W}{W^T S_W W}
 \]
 \[
 \Rightarrow \text{The columns of the optimal } W \text{ are the eigenvectors corresponding to the largest eigenvalues of }\]
 \[
 S_B W_i = \lambda_i S_W W_i
 \]
 \[
 \Rightarrow \text{Defining } V = S_B^{1/2} W \text{, we get }\]
 \[
 S_B^{1/2} S_W^{1/2} V = \lambda V
 \]
 which is a regular eigenvalue problem.
 \[
 \Rightarrow \text{Solve to get eigenvectors of } V \text{, then from that of } W.
 \]
- For the \(K \)-class case we obtain (at most) \(K-1 \) projections,
 (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

- What does it mean to apply a linear classifier?
 \[
 y(x) = W^T x
 \]
 Weight vector Input vector

- Classifier interpretation
 - The weight vector has the same dimensionality as \(x \).
 - Positive contributions where \(\text{sign}(x_i) = \text{sign}(w_i) \).
 - The weight vector identifies which input dimensions are important for positive or negative classification (large \(|w_i| \)) and which ones are irrelevant (near-zero \(w_i \)).
 - If the inputs \(x \) are normalized, we can interpret \(w \) as a "template" vector that the classifier tries to match.
 \[
 W^T x = |w||x| \cos \theta
 \]

Example Application: Fisherfaces

- Visual discrimination task
 \[
 C_1: \text{Subjects with glasses}
 \]
 \[
 C_2: \text{Subjects without glasses}
 \]
 - Training data:
 - Test:
 \[
 - \text{glasses?}
 \]
 Take each image as a vector of pixel values and apply FLD...

Fisherfaces: Interpretability

- Resulting weight vector for "Glasses/NoGlasses"

Summary: Fisher's Linear Discriminant

- Properties
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
 - Widely used in practical applications.

- Restrictions / Caveats
 - Not possible to get more than \(K-1 \) projections.
 - FLD reduces the computation to class means and covariances.
 \[
 \Rightarrow \text{Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.}
 \]
Fisher’s linear discriminant (FLD)
- Classification as dimensionality reduction
- Linear discriminant analysis
- Multiple discriminant analysis
- Applications

Logistic Regression
- Probabilistic discriminative models
- Logistic sigmoid (logit function)
- Cross-entropy error
- Gradient descent
- Iteratively Reweighted Least Squares

Note on Error Functions

Topics of This Lecture

Probabilistic Discriminative Models

- We have seen that we can write
 \[p(C_1|x) = \sigma(a) \]
 \[= \frac{1}{1 + \exp(-a)} \]
- We can obtain the familiar probabilistic model by setting
 \[a = \ln \frac{p(x|C_1)p(C_1)}{p(x|C_2)p(C_2)} \]
- Or we can use generalized linear discriminant models
 \[a = w^T \phi(x) \]

Comparison

- Let’s look at the number of parameters...
 - Assume we have an \(M \)-dimensional feature space \(\phi \).
 - And assume we represent \(p(\phi(C_1)) \) and \(p(\phi(C_2)) \) by Gaussians.
 - How many parameters do we need?
 - For the means: \(2M \)
 - For the covariances: \(M(M+1)/2 \)
 - Together with the class priors, this gives \(M(M+5)/2 + 1 \) parameters!
 - How many parameters do we need for logistic regression?
 - \(p(C_1|\phi) = y(\phi) = \sigma(w^T \phi) \)
 - Just the values of \(w \rightarrow M \) parameters!

\(\Rightarrow \) For large \(M \), logistic regression has clear advantages!

Logistic Sigmoid

- Definition:
 \[\sigma(a) = \frac{1}{1 + \exp(-a)} \]
- Inverse:
 \[a = \ln \left(\frac{\sigma}{1 - \sigma} \right) \]
- Symmetry property:
 \[\sigma(-a) = 1 - \sigma(a) \]
- Derivative:
 \[\frac{d\sigma}{da} = \sigma(1 - \sigma) \]

Logistic Regression

- Let’s consider a data set \(\{ \phi_n, t_n \} \) with \(n = 1, \ldots, N \), where \(\phi_n = \phi(x_n) \) and \(t_n \in \{0,1\} \), \(t = (t_1, \ldots, t_N)^T \).
- With \(y_n = p(C_1|\phi_n) \), we can write the likelihood as
 \[p(t|w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n} \]
- Define the error function as the negative log-likelihood
 \[E(w) = - \ln p(t|w) \]
 \[= - \sum_{n=1}^{N} \{ t_n \ln y_n + (1-t_n) \ln(1-y_n) \} \]
- This is the so-called cross-entropy error function.
Gradient of the Error Function

• Error function
\[E(w) = -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \} \]
\[\frac{\partial E}{\partial w} = y_n(1 - y_n) \phi_n \]

• Gradient
\[\nabla E(w) = -\sum_{n=1}^{N} \left\{ t_n \frac{\partial}{\partial y_n} \ln y_n + (1 - t_n) \frac{\partial}{\partial y_n} \ln(1 - y_n) \right\} \]
\[= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n(1 - y_n)}{y_n} \phi_n - (1 - t_n) \frac{y_n(1 - y_n)}{1 - y_n} \phi_n \right\} \]
\[= -\sum_{n=1}^{N} \left\{ \left(t_n - 4y_n^2 - y_n + 3y_n \phi_n \right) \phi_n \right\} \]
\[= \sum_{n=1}^{N} (y_n - t_n) \phi_n \]

A More Efficient Iterative Method...

• Second-order Newton-Raphson gradient descent scheme
\[w^{(r+1)} = w^{(r)} - H^{-1} \nabla E(w) \]
where \(H = \nabla^2 E(w) \) is the Hessian matrix, i.e. the matrix of second derivatives.

• Properties
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.

Newton-Raphson for Logistic Regression

• Now, let’s try Newton-Raphson on the cross-entropy error function:
\[E(w) = -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \} \]
\[\frac{\partial E}{\partial w} = y_n(1 - y_n) \phi_n \]
\[\nabla E(w) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \Phi^T(y - t) \]
\[H = \nabla^2 E(w) = \sum_{n=1}^{N} \phi_n \phi_n^T = \Phi^T \Phi \]
where \(\Phi \) is an \(N \times 1 \) vector of features.
\[\Rightarrow \text{The Hessian is no longer constant, but depends on } w \text{ through the weighting matrix } R. \]

Newton-Raphson for Least-Squares Estimation

• Let’s first apply Newton-Raphson to the least-squares error function:
\[E(w) = \frac{1}{2} \sum_{n=1}^{N} \left(w^T \phi_n - t_n \right)^2 \]
\[\nabla E(w) = \sum_{n=1}^{N} (w^T \phi_n - t_n) \phi_n = \Phi^T \phi w - \Phi^T t \]
\[H = \nabla^2 E(w) = \sum_{n=1}^{N} \phi_n \phi_n^T = \Phi^T \Phi \quad \text{where } \Phi = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_N^T \end{bmatrix} \]
• Resulting update scheme:
\[w^{(r+1)} = w^{(r)} - (\Phi^T \Phi)^{-1} \Phi^T (\Phi w^{(r)} - \Phi^T t) \]
\[= (\Phi^T \Phi)^{-1} \Phi^T t \quad \text{Closed-form solution!} \]

Iteratively Reweighted Least Squares

• Update equations
\[w^{(r+1)} = w^{(r)} - (\Phi^T R \Phi)^{-1} \Phi^T (y - t) \]
\[= (\Phi^T R \Phi)^{-1} \left\{ \Phi^T R \Phi w^{(r)} - \Phi^T t \right\} \]
\[= (\Phi^T R \Phi)^{-1} \Phi^T R z \]
with \(z = \Phi w^{(r)} - R^{-1} (y - t) \)
• Again very similar form (normal equations)
 - But now with non-constant weighting matrix \(R \) (depends on \(w \)).
 - Need to apply normal equations iteratively.
\[\Rightarrow \text{Iteratively Reweighted Least-Squares (IRLS)} \]
Summary: Logistic Regression

- Properties
 - Directly represent posterior distribution \(p(\phi | C_k) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
 - There is a multi-class version described in (Bishop Ch.4.3.4).
- Caveat
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Fisher’s Linear Discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares
- Note on Error Functions

Note on Error Functions

- Ideal misclassification error function (black)
 - This is what we would like to approximate.
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - \(z_n = t_n y(x_n) \)
 - We cannot minimize it by gradient descent.

Note on Error Functions

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes “too correct” data points
 - \(z_n = t_n y(x_n) \)
 - Generally does not lead to good classifiers.

Comparing Error Functions (Loss Functions)

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

Overview: Error Functions

- Ideal Misclassification Error
 - This is what we would like to optimize.
 - But cannot compute gradients here.
- Quadratic Error
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.
- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.
 - \(\Rightarrow \text{Analysis tool to compare classification approaches} \)
References and Further Reading

• More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006