Content of the Lecture

• Single-Object Tracking
 – *Background modeling*
 – Template based tracking
 – *Color based tracking*
 – *Contour based tracking*
 – Tracking by online classification
 – **Tracking-by-detection**

• Bayesian Filtering

• Multi-Object Tracking

• Visual Odometry

• Visual SLAM & 3D Reconstruction
Recap: Tracking as Online Classification

- Tracking as binary classification problem

object vs. background

Image source: Disney/Pixar

Slide credit: Helmut Grabner

Lecture: Computer Vision 2 (SS 2016) – Template-based Tracking
Prof. Dr. Bastian Leibe, Dr. Jörg Stückler
Recap: Tracking as Online Classification

• Tracking as binary classification problem

– Handle object and background changes by online updating

Image source: Disney/Pixar

• Main idea
 – Iteratively select an ensemble of classifiers
 – Reweight misclassified training examples after each iteration to focus training on difficult cases.

• Components
 – $h_m(x)$: “weak” or base classifier
 - Condition: <50% training error over any distribution
 – $H(x)$: “strong” or final classifier

• AdaBoost:
 – Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[
 H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right)
 \]
Recap: AdaBoost – Algorithm

1. Initialization: Set $w_n^{(1)} = \frac{1}{N}$ for $n = 1, \ldots, N$.

2. For $m = 1, \ldots, M$ iterations
 a) Train a new weak classifier $h_m(x)$ using the current weighting coefficients $W^{(m)}$ by minimizing the weighted error function
 \[
 J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)
 \]
 b) Estimate the weighted error of this classifier on X:
 \[
 \epsilon_m = \frac{\sum_{n=1}^{N} w_n^{(m)} I(h_m(x) \neq t_n)}{\sum_{n=1}^{N} w_n^{(m)}}
 \]
 c) Calculate a weighting coefficient for $h_m(x)$:
 \[
 \alpha_m = \ln \left\{ \frac{1 - \epsilon_m}{\epsilon_m} \right\}
 \]
 d) Update the weighting coefficients:
 \[
 w_n^{(m+1)} = w_n^{(m)} \exp \{\alpha_m I(h_m(x_n) \neq t_n)\}
 \]
From Offline to Online Boosting

• Main issue
 – Computing the weight distribution for the samples.
 – We do not know a priori the difficulty of a sample!
 (Could already have seen the same sample before...)

• Idea of Online Boosting
 – Estimate the importance of a sample by propagating it through
 a set of weak classifiers.
 – This can be thought of as modeling the information gain w.r.t. the first n
 classifiers and code it by the importance weight λ for the $n+1$
 classifier.
 – Proven [Oza]: Given the same training set, Online Boosting converges
 to the same weak classifiers as Offline Boosting in the limit of $N \rightarrow \infty$
 iterations.

N. Oza and S. Russell. Online Bagging and Boosting.
Recap: From Offline to Online Boosting

off-line

Given:
- set of labeled training samples
 \[\mathcal{X} = \{ \langle x_1, y_1 \rangle, \ldots, \langle x_L, y_L \rangle \mid y_i \pm 1 \} \]
- weight distribution over them
 \[D_0 = 1/L \]

for \(n = 1 \) to \(N \)
- train a weak classifier using samples and weight dist.
 \[h_{weak}^n(x) = \mathcal{L}(\mathcal{X}, D_{n-1}) \]
- calculate error \(e_n \)
- calculate weight \(\alpha_n = f(e_n) \)
- update weight dist. \(D_n \)

next

\[h_{strong}(x) = \text{sign}\left(\sum_{n=1}^{N} \alpha_n \cdot h_{weak}^n(x) \right) \]

on-line

Given:
- ONE labeled training sample
 \[\langle x, y \rangle \mid y \pm 1 \]
- strong classifier to update
- initial importance \(\lambda = 1 \)

for \(n = 1 \) to \(N \)
- update the weak classifier using samples and importance
 \[h_{weak}^n(x) = \mathcal{L}(h_{weak}^{n-1}, \langle x, y \rangle, \lambda) \]
- update error estimation \(\tilde{e}_n \)
- update weight \(\alpha_n = f(\tilde{e}_n) \)
- update importance weight \(\lambda \)

next

\[h_{strong}(x) = \text{sign}\left(\sum_{n=1}^{N} \alpha_n \cdot h_{weak}^n(x) \right) \]
Recap: Online Boosting for Feature Selection

• Introducing “Selector”
 – Selects one feature from its local feature pool

$$\mathcal{H}^{weak} = \{ h_1^{weak}, \ldots, h_M^{weak} \}$$

$$\mathcal{F} = \{ f_1, \ldots, f_M \}$$

$$h^{sel}(x) = h_m^{weak}(x)$$

$$m = \arg \min_{i} e_i$$

On-line boosting is performed on the Selectors and not on the weak classifiers directly.

Recap: Direct Feature Selection

K one training sample

\[\text{hSelector}_1 \]

\[\text{estimate errors} \]

\[\text{select best weak classifier} \]

\[\text{initial importance } \lambda = 1 \]

\[\alpha_1 \]

repeat for each training sample

\[\text{update weight} \]

\[h_i \]

\[h_k \]

\[h_m \]

\[h_M \]

global weak classifier pool

\[\text{estimate errors} \]

\[\text{select best weak classifier} \]

\[\lambda \]

\[\alpha_2 \]

\[\alpha_N \]

\[\text{update weight} \]

\[\text{current strong classifier } h_{\text{Strong}} \]

Slide credit: Helmut Grabner
Recap: Tracking by Online Classification

Lecture: Computer Vision 2 (SS 2016) – Template-based Tracking
Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Helmut Grabner
Image source: Disney/Pixar
When Does It Fail...
Why Does It Fail?

from time t to $t+1$

<table>
<thead>
<tr>
<th>Update classifier (tracker)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>+</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluate classifier on sub-patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search region</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyze map and set new object position</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Create confidence map</th>
</tr>
</thead>
</table>

Actual object position

Update classifier (tracker)

Create confidence map

Evaluate classifier on sub-patches

Search region

Analyze map and set new object position

from time t to $t+1$
Why Does It Fail?

- Actual object position
- Search region
- Evaluate classifier on sub-patches

From time \(t \) to \(t+1 \)

- Update classifier (tracker)
- Analyze map and set new object position

Self-learning

Create confidence map

Lecture: Computer Vision 2 (SS 2016) – Template-based Tracking
Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Helmut Grabner
Image source: Disney/Pixar
Drifting Due to Self-Learning Policy

⇒ Not only does it drift, it also remains confident about it!
Self-Learning and Drift

- Drift
 - Major problem in all adaptive or self-learning trackers.
 - Difficulty: distinguish “allowed” appearance change due to lighting or viewpoint variation from “unwanted” appearance change due to drifting.

 - Cannot be decided based on the tracker confidence!
 - Since the confidence is always dependent on the learned model
 - Model may already be affected by drift when the confidence is measured.

 - Several approaches have been proposed to address this.
Strategy 1: Match Against Initialization

- Used mostly in low-level trackers (e.g., KLT)
 - Advantage: robustly catches drift
 - Disadvantage: cannot follow appearance changes

Strategy 2: Semi-Supervised Learning

Object Detector Our approach Object Tracker

Fixed Training set Fixed Prior for updating an On-line update
General object detector Adaptive on-line classifier Object vs. Background

Prior

Labeled data
Un-labeled data

Strategy 3: Using Additional Cues

- **Tracking-Learning-Detection**
 - Combination of KLT and Tracking-by-Detection
 - Use a KLT tracker as additional cue to generate confident (positive and negative) training examples.
 - Learn an object detector on the fly using Online Random Ferns.

TLD Results
Accumulated Training Examples
Can we use generic object detection to track people?
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Main ideas

- Apply a generic object detector to find objects of a certain class
- Based on the detections, extract object appearance models
 - Even possible to derive figure-ground segmentations from detection results
- Link detections into trajectories
Tracking-by-Detection in 3D

Object detections

Simple f/g model: E.g., elliptical region in detection box

3D Camera path estimation

Spacetime trajectories

Main Issue: Data Association
(We’ll come to that later…)

[Leibe, Cornelis, Schindler, Van Gool, PAMI'08]
Spacetime Trajectory Analysis

Pedestrian detection

Car detections

Own vehicle

[Leibe, Cornelis, Schindler, Van Gool, CVPR'07]
Elements of Tracking

- **Detection**
 - *Where are candidate objects?*

- **Data association**
 - *Which detection corresponds to which object?*

- **Prediction**
 - *Where will the tracked object be in the next time step?*

Today’s topic
Recap: Sliding-Window Object Detection

- Basic component: a binary classifier

Car/non-car Classifier

No

Yes, car.

Yes, not car.
Recap: Sliding-Window Object Detection

• If object may be in a cluttered scene, slide a window around looking for it.

• Essentially, this is a brute-force approach with many local decisions.
What is a Sliding Window Approach?

- Search over space and scale

- Detection as subwindow classification problem

- “In the absence of a more intelligent strategy, any global image classification approach can be converted into a localization approach by using a sliding-window search.”
Recap: Non-Maximum Suppression

After multi-scale dense scan

Clip detection score

Map each detection to 3D [x, y, scale] space

Apply robust mode detection, e.g., mean shift

Non-maximum suppression

Image source: Navneet Dalal, PhD Thesis
Recap: Sliding-Window Object Detection

- Fleshing out this pipeline a bit more, we need to:
 1. Obtain training data
 2. Define features
 3. Define classifier

Lecture: Computer Vision 2 (SS 2016) – Template-based Tracking
Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Kristen Grauman
Object Detector Design

• In practice, the classifier often determines the design.
 – Types of features
 – Speedup strategies

• Today, we’ll look at 3 state-of-the-art detector designs
 – Based on SVMs
 – Based on Boosting
 – Based on CNNs
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Recap: Histograms of Oriented Gradients (HOG)

- Holistic object representation
 - Localized gradient orientations

Object/Non-object

Linear SVM

Collect HOGs over detection window

Contrast normalize over overlapping spatial cells

Weighted vote in spatial & orientation cells

Compute gradients

Gamma compression

Image Window

Slide adapted from Navneet Dalal
Recap: Support Vector Machine (SVM)

- **Basic idea**
 - The SVM tries to find a classifier which maximizes the **margin** between pos. and neg. data points.
 - Up to now: consider linear classifiers
 \[
 \mathbf{w}^T \mathbf{x} + b = 0
 \]

- **Formulation as a convex optimization problem**
 - Find the hyperplane satisfying
 \[
 \arg\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2
 \]
 under the constraints
 \[
 t_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1 \quad \forall n
 \]
 based on training data points \(\mathbf{x}_n \) and target values \(t_n \in \{-1, 1\} \)
Recap: Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template

\[y(x) = w^T x + b \]

HOG feature map

Template

Detector response map

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
Pedestrian detection with HoGs & SVMs

Incorporating Ground Plane Constraints

- Efficient integration into detector design (**groundHOG**)
 - Idea: only evaluate geometrically valid detection windows
 - Derivation: Region of interest lies between two parabolas…
 - …that can in most cases be approximated by straight lines.
 ⇒ *Only touch pixels inside the ROI for all computations.*
 ⇒ Factor 2-4 speed improvement *on top of all other optimizations*
Real-Time Pedestrian Detection

- Efficient CUDA HOG implementation (equivalent to original HOG code)
- Code made **publicly available as open source under GPL**
- Run-time comparison:

<table>
<thead>
<tr>
<th>run-time</th>
<th>1280 (\times) 960</th>
<th>640 (\times) 480</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cuda</td>
<td>ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cuda</td>
</tr>
<tr>
<td>Laptop GTX 285M</td>
<td>1.6 fps</td>
<td>9.6 fps</td>
</tr>
<tr>
<td>Desktop GTX 280</td>
<td>5.5 fps</td>
<td>17.2 fps</td>
</tr>
<tr>
<td>Desktop GTX 580</td>
<td>9.8 fps</td>
<td>27.8 fps</td>
</tr>
</tbody>
</table>

⇒ *Detection at video frame rate possible even on laptops with mobile GPUs!*
You Can Try It At Home…

• groundHOG GPU detector code publicly available
 – Highly optimized for speed
 – Can be used with or without ground plane constraints
 – Supports general ROI processing
 – Supports multi-class detection with feature sharing
 – Published under GPL license (other licensing negotiable)

 – http://www.vision.rwth-aachen.de/projects/groundhog

P. Sudowe, B. Leibe, Efficient Use of Geometric Constraints for Sliding Window Object Detection in Video, ICVS 2011
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Recap: Part-Based Models

• Pictorial Structures model
 – [Fischler & Elschlager 1973]

• Model has two components
 – Parts
 (2D image fragments)
 – Structure
 (configuration of parts)

• Use in **Deformable Part-based Model (DPM)**
 – Parts \(\equiv\) 5-7 semantically meaningful parts
 – Probabilistic model enabling efficient inference
Starting Point: HOG Sliding-Window Detector

- Array of weights for features in window of HOG pyramid
- Score is dot product of filter and vector

$$\phi(p, H) = \text{concatenation of HOG features from window specified by } p.$$
Deformable Part-based Models

- Mixture of deformable part models (Pictorial Structures)
- Each component has global template + deformable parts
- Fully trained from bounding boxes alone

[Felzenszwalb, McAllister, Ramanan, CVPR'08]
2-Component Bicycle Model

Root filters
coarse resolution

Part filters
finer resolution

Deformation models

[Felzenszwalb, McAllister, Ramanan, CVPR'08]
Object Hypothesis

- Multiscale model captures features at two resolutions

Score of object hypothesis is sum of filter scores minus deformation costs

Score of filter: dot product of filter with HOG features underneath it

Image pyramid

HOG feature pyramid

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Score of a Hypothesis

\[
\text{score}(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot (dx_i^2, dy_i^2)
\]

“data term”

“spatial prior”

filters

deformation parameters

deformations

\[
\text{score}(z) = \beta \cdot \Psi(H, z)
\]

concatenation filters and deformation parameters

concatenation of HOG features and part displacement features

[Felzenszwalb, McAllister, Ramanan, CVPR’08]
Recognition Model

- Difference to standard HOG model
 - Hidden variable z: vector of part offsets
 - $\Phi(x, z)$: vector of HOG features (from root filter & appropriate part sub-windows) and part offsets
 \Rightarrow Need to optimize over all possible part positions

\[
f_w(x) = w \cdot \Phi(x) \quad f_w(x) = \max_z w \cdot \Phi(x, z)
\]
Results: Persons

- Results (after non-maximum suppression)
 - ~1s to search all scales
Results: Bicycles
Extensions and Detailed Improvements

- More efficient features
 - Very simplified version of HOG

- Latent part (re-)learning
 - Perform several rounds of training, adapting the annotation bboxes

- Multi-aspect detection
 - Mixture model of different aspects to capture different viewpoints of objects

- Bounding box prediction
 - Infer final detection bounding box from detected part locations

- Multi-resolution models

- Cascaded evaluation
You Can Try It At Home…

- Deformable part-based models have been very successful at several recent evaluations.
 ⇒ One of the state-of-the-art approaches in object detection

- Source code and models trained on PASCAL 2006, 2007, and 2008 data are available here:
 http://www.cs.uchicago.edu/~pff/latent
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Recap: Viola-Jones Face Detector

- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade (6061 features in final layer)
- [Implementation available in OpenCV: http://sourceforge.net/projects/opencvlibrary/]
Recap: Haar Wavelets

“Rectangular” filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images ⇒ Scale features directly for same cost

Value at \((x,y) \) is sum of pixels above and to the left of \((x,y) \)

\[
D = 1 + 4 - (2 + 3) \\
= A + (A + B + C + D) - (A + C + A + B) \\
= D
\]
Recap: Cascading Classifiers for Detection

- Even if the filters are fast to compute, each new image has a lot of possible windows to search...

- Idea: Classifier cascade
 - Observation: most image windows are negative and look very different from the searched object class.
 - Filter for promising regions with an initial inexpensive classifier
 - Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

[Fleuret & Geman, IJCV’01; Rowley et al., PAMI’98; Viola & Jones, CVPR’01]
Viola-Jones Face Detector: Results
You Can Try It At Home…

- The Viola & Jones detector was a huge success
 - First real-time face detector available
 - Many derivative works and improvements

- C++ implementation available in OpenCV [Lienhart, 2002]
 - http://sourceforge.net/projects/opencvlibrary/

- Matlab wrappers for OpenCV code available, e.g. here

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Integral Channel Features

- Generalization of Haar Wavelet idea from Viola-Jones
 - Instead of only considering intensities, also take into account other feature channels (gradient orientations, color, texture).
 - Still efficiently represented as integral images.

Integral Channel Features

- Generalize also block computation
 - 1st order features:
 - Sum of pixels in rectangular region.
 - 2nd-order features:
 - Haar-like difference of sum-over-blocks
 - Generalized Haar:
 - More complex combinations of weighted rectangles
 - Histograms
 - Computed by evaluating local sums on quantized images.
Results: Integral Channel Features

- **fastHOG**
 - ~10 Hz on GPU
 - [Prisacariu 2009]

- **DPM**
 - [Felzenszwalb 2008]

- **ChnFtrs/FPDW**
 - ~5 Hz on CPU
 - [Dollar 2009+2010]

Lecture: Computer Vision 2 (SS 2016) – Template-based Tracking
Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide credit: Rodrigo Benenson
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Performance Comparison of Detectors

INRIA dataset

- Shapelet-orig (90.5%)
- PoseInVrSvm (68.6%)
- VJ-OpenCv (53.0%)
- PoseInV (51.4%)
- Shapelet (50.4%)
- VJ (47.5%)
- FtrMine (34.0%)
- Pls (23.4%)
- HOG (23.1%)
- HikSvm (21.9%)
- LatSvm-V1 (17.5%)
- MultiFtr (15.6%)
- MultiFtr+CSS (10.9%)
- LatSvm-V2 (9.9%)
- FPDW (9.3%)
- ChnFtrs (8.7%)

false positives per image vs. miss rate
Performance Comparison of Detectors

VeryFast 50 Hz
Issues for Efficient Detection

- One template cannot detect at multiple scales...
Issues for Efficient Detection

- Typically, features are computed many times

~50 scales
Issues for Efficient Detection

- Typically, features are computed many times

~50 scales
VeryFast Detector

• **Idea 1**: Invert the relation

Practical Considerations

• Training and running 1 model/scale is too expensive
VeryFast Detector

• Idea 2: Reduce training time by feature interpolation

5 models, 1 image scale ≈ 50 models, 1 image scale

• Shown to be possible for Integral Channel features
VeryFast Detector

- Effect: Transfer test time computation to training time

\[\Rightarrow \text{Result: } 3x \text{ reduction in feature computation} \]
VeryFast: Classifier Construction

- Ensemble of short trees, learned by AdaBoost

\[\text{score} = w_1 \cdot h_1 + \]

Slide credit: Rodrigo Benenson
VeryFast: Classifier Construction

- Ensemble of short trees, learned by AdaBoost

\[\text{score} = w_1 \cdot h_1 + w_2 \cdot h_2 \]
VeryFast: Classifier Construction

• Ensemble of short trees, learned by AdaBoost

\[score = w_1 \cdot h_1 + w_2 \cdot h_2 + \ldots + w_N \cdot h_N \]
Learned Models

Integral Channel features

Models

Slide credit: Rodrigo Benenson
• Detection without resizing improves quality of results
Multi-Scale Models > Single-Scale Model
Comparison to State-of-the-Art

INRIA dataset

ETH dataset

- **Extension:** Roerei detector
 - Detailed evaluation of design space
 - Non-regular pooling regions found to work best.

Lecture: Computer Vision 2 (SS 2016) – Template-based Tracking
Prof. Dr. Bastian Leibe, Dr. Jörg Stückler

Slide adapted from Rodrigo Benenson
Roerei Results

Applications: Mobile Robot Navigation

link to the video
Topics of This Lecture

• Tracking by Detection
 – Motivation
 – Recap: Object detection

• SVM based Detectors
 – Recap: HOG
 – DPM

• AdaBoost based Detectors
 – Recap: Viola-Jones
 – Integral Channel features
 – VeryFast/Roerei

• CNN-based Detectors
 – Recap: CNNs
 – R-CNN
Recap: Convolutional Neural Networks

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Recap: Intuition of CNNs

• Convolutional net
 – Share the same parameters across different locations
 – Convolutions with learned kernels

• Learn *multiple* filters
 – E.g. 1000×1000 image
 100 filters
 10×10 filter size
 ⇒ only 10k parameters

• Result: Response map
 – size: $1000 \times 1000 \times 100$
 – Only memory, not params!
Recap: Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single \([1 \times 1 \times \text{depth}]\) depth column in output volume.
Recap: Activation Maps

Activation maps

one filter = one depth slice (or activation map)

5×5 filters
Recap: Pooling Layers

- **Effect:**
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations
R-CNN Detector

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

- Results on PASCAL VOC Detection benchmark
 - Pre-CNN state of the art: 35.1% mAP [Uijlings et al., 2013]
 - 33.4% mAP DPM
 - R-CNN: 53.7% mAP

You Can Try All of This At Home…

• Detector code is publicly available

 ➢ HOG:
 – Dalal’s original implementation:
 http://www.navneetdalal.com/software/
 – Our CUDA-optimized groundHOG code (>80 fps on GTX 580)
 http://www.mmp.rwth-aachen.de/projects/groundhog

 ➢ DPM:
 – Felzenswalb’s original implementation:
 http://www.cs.uchicago.edu/~pff/latent

 ➢ VeryFast
 – Benenson’s original implementation:
 https://bitbucket.org/rodrigob/doppia/

 ➢ R-CNN
 – Girshick’s original implementation:
 https://github.com/rbgirshick/rcnn