Machine Learning - Lecture 13

Introduction to Graphical Models

16.06.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele, S. Roth
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Decision Trees & Randomized Trees
 - Regression Problems

- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields
 - Exact Inference
Topics of This Lecture

• Graphical Models
 - Introduction

• Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away
Graphical Models - What and Why?

• *It’s got nothing to do with graphics!*

• Probabilistic graphical models

 - Marriage between *probability theory* and *graph theory*.
 - Formalize and visualize the *structure* of a probabilistic model through a graph.
 - Give insights into the structure of a probabilistic model.
 - Find *efficient solutions* using methods from graph theory.

 - Natural tool for dealing with uncertainty and complexity.
 - Becoming increasingly important for the design and analysis of machine learning algorithms.
 - Often seen as new and promising way to approach problems related to Artificial Intelligence.
Graphical Models

• There are two basic kinds of graphical models
  Directed graphical models or Bayesian Networks
  Undirected graphical models or Markov Random Fields

• Key components
  Nodes
  Edges
 - Directed or undirected

Slide credit: Bernt Schiele
Topics of This Lecture

- Graphical Models
 - Introduction

- Directed Graphical Models (Bayesian Networks)
 - Notation
 - Conditional probabilities
 - Computing the joint probability
 - Factorization
 - Conditional Independence
 - D-Separation
 - Explaining away
Example: Wet Lawn

- Mr. Holmes leaves his house.
 - He sees that the lawn in front of his house is wet.
 - This can have several reasons: Either it rained, or Holmes forgot to shut the sprinkler off.
 - Without any further information, the probability of both events (rain, sprinkler) increases (knowing that the lawn is wet).

- Now Holmes looks at his neighbor’s lawn
 - The neighbor’s lawn is also wet.
 - This information increases the probability that it rained. And it lowers the probability for the sprinkler.

⇒ How can we encode such probabilistic relationships?
Example: Wet Lawn

- Directed graphical model / Bayesian network:

 ![Graphical Model]

 "Rain can cause both lawns to be wet."

 "Holmes’ lawn may be wet due to his sprinkler, but his neighbor’s lawn may not."

Slide credit: Bernt Schiele, Stefan Roth
Directed Graphical Models

• or Bayesian networks
 ➢ Are based on a directed graph.
 ➢ The nodes correspond to the random variables.
 ➢ The directed edges correspond to the (causal) dependencies among the variables.
 - The notion of a causal nature of the dependencies is somewhat hard to grasp.
 - We will typically ignore the notion of causality here.
 ➢ The structure of the network qualitatively describes the dependencies of the random variables.
Directed Graphical Models

• Nodes or random variables
 - We usually know the range of the random variables.
 - The value of a variable may be known or unknown.
 - If they are known (observed), we usually shade the node:

 ![Unknown and Known Nodes]

 unknown

 known

• Examples of variable nodes
 - Binary events: Rain (yes / no), sprinkler (yes / no)
 - Discrete variables: Ball is red, green, blue, ...
 - Continuous variables: Age of a person, ...
Directed Graphical Models

• Most often, we are interested in **quantitative statements**
 - i.e. the probabilities (or densities) of the variables.
 - Example: What is the probability that it rained? ...

 ➢ These probabilities change if we have
 - more knowledge,
 - less knowledge, or
 - different knowledge
 about the other variables in the network.
Directed Graphical Models

- Simplest case:

![Directed Graphical Model](image)

- This model encodes:
 - The value of b depends on the value of a.
 - This dependency is expressed through the **conditional probability**:
 $$ p(b|a) $$
 - Knowledge about a is expressed through the **prior probability**:
 $$ p(a) $$
 - The whole graphical model describes the **joint probability** of a and b:
 $$ p(a, b) = p(b|a)p(a) $$

Slide credit: Bernt Schiele, Stefan Roth
Directed Graphical Models

• If we have such a representation, we can derive all other interesting probabilities from the joint.

 ➢ E.g. marginalization

\[
p(a) = \sum_b p(a, b) = \sum_b p(b|a)p(a)
\]

\[
p(b) = \sum_a p(a, b) = \sum_a p(b|a)p(a)
\]

➢ With the marginals, we can also compute other conditional probabilities:

\[
p(a|b) = \frac{p(a, b)}{p(b)}
\]
Directed Graphical Models

- Chains of nodes:

 - As before, we can compute
 \[p(a, b) = p(b|a)p(a) \]

 - But we can also compute the joint distribution of all three variables:
 \[p(a, b, c) = p(c|a, b)p(a, b) \]
 \[= p(c|b)p(b|a)p(a) \]

 - We can read off from the graphical representation that variable \(c \) does not depend on \(a \), if \(b \) is known.
 - How? What does this mean?
Directed Graphical Models

- Convergent connections:

 Here the value of c depends on both variables a and b.

 This is modeled with the conditional probability:

 $$ p(c|a, b) $$

 Therefore, the joint probability of all three variables is given as:

 $$ p(a, b, c) = p(c|a, b)p(a, b) $$

 $$ = p(c|a, b)p(a)p(b) $$

Slide credit: Bernt Schiele, Stefan Roth
Example

\[
p(C) = \frac{p(C = F) \cdot p(C = T)}{0.5 \cdot 0.5}
\]

\[
p(S|C) = \begin{array}{c|cc}
C & p(S = F) & p(S = T) \\
F & 0.5 & 0.5 \\
T & 0.9 & 0.1 \\
\end{array}
\]

\[
p(R|C) = \begin{array}{c|cc}
C & p(R = F) & p(R = T) \\
F & 0.8 & 0.2 \\
T & 0.2 & 0.8 \\
\end{array}
\]

\[
p(W|R, S) = \begin{array}{c|cc}
SR & p(W = F) & p(W = T) \\
FF & 1.0 & 0.0 \\
TT & 0.1 & 0.9 \\
FT & 0.1 & 0.9 \\
TT & 0.01 & 0.99
\end{array}
\]

Let’s see what such a Bayesian network could look like...

- Structure?
- Variable types? Binary.
- Conditional probabilities?
Example

- Evaluating the Bayesian network...
 - We start with the simple product rule:
 \[p(a, b, c) = p(a|b, c)p(b, c) = p(a|b, c)p(b|c)p(c) \]
 - This means that we can rewrite the joint probability of the variables as
 \[p(C, S, R, W) = p(C)p(S|C)p(R|C, S)p(W|C, S, R) \]
 - But the Bayesian network tells us that
 \[p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W|S, R) \]
 - i.e. rain is independent of sprinkler (given the cloudyness).
 - Wet grass is independent of the cloudiness (given the state of the sprinkler and the rain).

⇒ This is a factorized representation of the joint probability.
Directed Graphical Models

- A general directed graphical model (Bayesian network) consists of
 - A set of variables: \[U = \{x_1, \ldots, x_n\} \]
 - A set of directed edges between the variable nodes.
 - The variables and the directed edges define an acyclic graph.
 - Acyclic means that there is no directed cycle in the graph.
 - For each variable \(x_i \) with parent nodes \(\text{pa}_i \) in the graph, we require knowledge of a conditional probability:
 \[p(x_i | \{x_j | j \in \text{pa}_i\}) \]
Directed Graphical Models

- **Given**
 - **Variables:** \(U = \{x_1, \ldots, x_n\} \)
 - **Directed acyclic graph:** \(G = (V, E) \)
 - \(V \): nodes = variables, \(E \): directed edges
 - We can express / compute the joint probability as
 \[
 p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(x_i | \{x_j | j \in pa_i\})
 \]
 where \(pa_i \) denotes the parent nodes of \(x_i \).
 - We can express the joint as a product of all the conditional distributions from the parent-child relations in the graph.
 - We obtain a factorized representation of the joint.

Slide credit: Bernt Schiele, Stefan Roth
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = ? \]
Directed Graphical Models

- Exercise: Computing the joint probability

\[
p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)\ldots
\]
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]

\[\ldots \]
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3) \ldots \]

Image source: C. Bishop, 2006
Directed Graphical Models

- Exercise: Computing the joint probability

\[p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \]
\[p(x_5|x_1, x_3)p(x_6|x_4) \ldots \]
Directed Graphical Models

- **Exercise: Computing the joint probability**

\[
p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3) \cdot p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)
\]

General factorization

\[
p(x) = \prod_{k=1}^{K} p(x_k|\text{pa}_k)
\]

We can directly read off the factorization of the joint from the network structure!
Factorized Representation

• Reduction of complexity
 - Joint probability of n binary variables requires us to represent values by brute force
 \[O(2^n) \text{ terms} \]
 - The factorized form obtained from the graphical model only requires
 \[O(n \cdot 2^k) \text{ terms} \]
 - k: maximum number of parents of a node.
Example: Classifier Learning

- Bayesian classifier learning
 - Given N training examples $\mathbf{x} = \{x_1, \ldots, x_N\}$ with target values \mathbf{t}
 - We want to optimize the classifier \mathbf{y} with parameters \mathbf{w}.
 - We can express the joint probability of \mathbf{t} and \mathbf{w}:
 \[
 p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))
 \]
 - Corresponding Bayesian network:

Diagram:

- w
- t_1\ldotst_N

Short notation:

- "Plate" (short notation for N copies)
Conditional Independence

• Suppose we have a joint density with 4 variables.

\[p(x_0, x_1, x_2, x_3) \]

- For example, 4 subsequent words in a sentence:
 \[x_0 = \text{“Machine”}, \quad x_1 = \text{“learning”}, \quad x_2 = \text{“is”}, \quad x_3 = \text{“fun”} \]

• The product rule tells us that we can rewrite the joint density:

\[
p(x_0, x_1, x_2, x_3) = p(x_3 | x_0, x_1, x_2)p(x_0, x_1, x_2)
\]
\[
= p(x_3 | x_0, x_1, x_2)p(x_2 | x_0, x_1)p(x_0, x_1)
\]
\[
= p(x_3 | x_0, x_1, x_2)p(x_2 | x_0, x_1)p(x_1 | x_0)p(x_0)
\]
Conditional Independence

\[p(x_0, x_1, x_2, x_3) = p(x_3|x_0, x_1, x_2)p(x_2|x_0, x_1)p(x_1|x_0)p(x_0) \]

- Now, suppose we make a simplifying assumption
 - Only the previous word is what matters, i.e. given the previous word we can forget about every word before the previous one.
 - E.g. \(p(x_3|x_0, x_1, x_2) = p(x_3|x_2) \) or \(p(x_2|x_0, x_1) = p(x_2|x_1) \)
 - Such assumptions are called conditional independence assumptions.

⇒ It’s the edges that are missing in the graph that are important! They encode the simplifying assumptions we make.
Conditional Independence

• The notion of **conditional independence** means that
 - Given a certain variable, other variables become independent.

- More concretely here:
 \[p(x_3|x_0, x_1, x_2) = p(x_3|x_2) \]
 - This means that \(x_3 \) is conditionally independent from \(x_0 \) and \(x_1 \) given \(x_2 \).
 \[p(x_2|x_0, x_1) = p(x_2|x_1) \]
 - This means that \(x_2 \) is conditionally independent from \(x_0 \) given \(x_1 \).

- Why is this?
 \[p(x_0, x_2|x_1) = p(x_2|x_0, x_1)p(x_0|x_1) \]
 \[= p(x_2|x_1)p(x_0|x_1) \]
 independent given \(x_1 \)

Slide credit: Bernt Schiele, Stefan Roth
Conditional Independence - Notation

• X is conditionally independent of Y given V

 - Equivalence: $X \perp Y|V \iff p(X|Y, V) = p(X|V)$

 - Also: $X \perp Y|V \iff p(X, Y|V) = p(X|V)p(Y|V)$

 - Special case: Marginal Independence

 $$X \perp Y \iff X \perp Y|\emptyset \iff p(X, Y) = p(X)p(Y)$$

 - Often, we are interested in conditional independence between sets of variables:

 $$\mathcal{X} \perp \mathcal{Y}|\mathcal{V} \iff \{X \perp Y|\mathcal{V}, \forall X \in \mathcal{X} \text{ and } \forall Y \in \mathcal{Y}\}$$
Conditional Independence

• Directed graphical models are not only useful...
 ➢ Because the joint probability is factorized into a product of simpler conditional distributions.
 ➢ But also, because we can read off the conditional independence of variables.

• Let’s discuss this in more detail...
First Case: Divergent ("Tail-to-Tail")

- Divergent model

- Are \(a \) and \(b \) independent?

- Marginalize out \(c \):
 \[
 p(a, b) = \sum_c p(a, b, c) = \sum_c p(a|c)p(b|c)p(c)
 \]

- In general, this is not equal to \(p(a)p(b) \).
 \[\Rightarrow \text{The variables are not independent.}\]
First Case: Divergent (”Tail-to-Tail”)

- What about now?

 - Are a and b independent?

 - Marginalize out c:

 $$p(a, b) = \sum_c p(a, b, c) = \sum_c p(a|c)p(b)p(c) = p(a)p(b)$$

 \Rightarrow If there is no undirected connection between two variables, then they are independent.
First Case: Divergent ("Tail-to-Tail")

- Let's return to the original graph, but now assume that we observe the value of c:

$$p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a | c)p(b | c)p(c)}{p(c)} = p(a | c)p(b | c)$$

\implies If c becomes known, the variables a and b become conditionally independent.
Second Case: Chain ("Head-to-Tail")

- Let us consider a slightly different graphical model:

 ![Chain graph]

 - Are \(a\) and \(b\) independent? **No!**

 \[
 p(a, b) = \sum_c p(a, b, c) = \sum_c p(b|c)p(c|a)p(a) = p(b|a)p(a)
 \]

 - If \(c\) becomes known, are \(a\) and \(b\) conditionally independent? **Yes!**

 \[
 p(a, b|c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a)p(c|a)p(b|c)}{p(c)} = p(a|c)p(b|c)
 \]
Third Case: Convergent ("Head-to-Head")

- Let’s look at a final case: Convergent graph

 ![Convergent Graph](image)

 - Are a and b independent? **YES!**

 $$ p(a, b) = \sum_c p(a, b, c) = \sum_c p(c|a, b)p(a)p(b) = p(a)p(b) $$

 - This is very different from the previous cases.
 - Even though a and b are connected, they are independent.
Third Case: Convergent ("Head-to-Head")

- Now we assume that c is observed.

 - Are a and b independent? **NO!**

 $p(a, b|c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a)p(b)p(c|a, b)}{p(c)}$

 - In general, they are not conditionally independent.
 - This also holds when any of c’s descendants is observed.

 - This case is the opposite of the previous cases!
Summary: Conditional Independence

● Three cases
 - **Divergent** ("Tail-to-Tail")
 - Conditional independence when \(c \) is observed.
 - **Chain** ("Head-to-Tail")
 - Conditional independence when \(c \) is observed.
 - **Convergent** ("Head-to-Head")
 - Conditional independence when neither \(c \), nor any of its descendants are observed.
D-Separation

• Definition
 - Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
 - A path from A to B is blocked if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
 - If all paths from A to B are blocked, A is said to be d-separated from B by C.

• If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp B \mid C$.
 - Read: “A is conditionally independent of B given C.”

Slide adapted from Chris Bishop
D-Separation: Example

- Exercise: What is the relationship between a and b?

\[a \perp \!\!\!\!\!\!\!\!\!\perp b \mid c \]
\[a \perp \!\!\!\!\!\!\!\!\!\perp b \mid f \]
Explaining Away

- Let’s look at Holmes’ example again:

 Observation “Holmes’ lawn is wet” increases the probability of both “Rain” and “Sprinkler”.

Slide adapted from Bernt Schiele, Stefan Roth
Explaining Away

- Let’s look at Holmes’ example again:

 - Observation “Holmes’ lawn is wet” increases the probability of both “Rain” and “Sprinkler”.
 - Also observing “Neighbor’s lawn is wet” decreases the probability for “Sprinkler”. (They’re conditionally dependent!)

 ⇒ The “Sprinkler” is explained away.
Intuitive View: The “Bayes Ball” Algorithm

• Game
 - Can you get a ball from X to Y without being blocked by \forall?
 - Depending on its direction and the previous node, the ball can
 - Pass through (from parent to all children, from child to all parents)
 - Bounce back (from any parent/child to all parents/children)
 - Be blocked

R.D. Shachter, Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams), UAI’98, 1998
The “Bayes Ball” Algorithm

- Game rules
 - An **unobserved** node \((W \notin \mathcal{V})\) passes through balls from parents, but *also bounces back* balls from children.

 ![Diagram of unobserved node with arrows indicating ball flow](image1)

 - An **observed** node \((W \in \mathcal{V})\) **bounces back** balls from parents, but *blocks* balls from children.

 ![Diagram of observed node with arrows indicating ball flow](image2)

 \[\Rightarrow \text{The Bayes Ball algorithm determines those nodes that are } d\text{-separated from the query node.}\]
Example: Bayes Ball

- Which nodes are d-separated from G given C and D?
Example: Bayes Ball

- Which nodes are d-separated from G given C and D?
Example: Bayes Ball

Which nodes are d-separated from G given C and D?
Example: Bayes Ball

- Which nodes are d-separated from G given C and D?
Example: Bayes Ball

- Which nodes are d-separated from G given C and D?
Example: Bayes Ball

• Which nodes are d-separated from G given C and D?
 $\Rightarrow F$ is d-separated from G given C and D.

Rule:

Query
The Markov Blanket

- **Markov blanket of a node** x_i
 - Minimal set of nodes that isolates x_i from the rest of the graph.
 - This comprises the set of
 - Parents,
 - Children, and
 - Co-parents of x_i.

This is what we have to watch out for!

Image source: C. Bishop, 2006
Summary

• Graphical models
 - Marriage between probability theory and graph theory.
 - Give insights into the structure of a probabilistic model.
 - Direct dependencies between variables.
 - Conditional independence
 - Allow for efficient factorization of the joint.
 - Factorization can be read off directly from the graph.
 - We will use this for efficient inference algorithms!
 - Capability to explain away hypotheses by new evidence.

• Next lecture
 - Undirected graphical models (Markov Random Fields)
 - Efficient methods for performing exact inference.
References and Further Reading

- A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop’s book.

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006