Decision Trees

Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation
- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields

Topics of This Lecture

- **Decision Trees**
 - Main concepts
- **Randomized Decision Trees**
 - Randomized attribute selection
- **Random Forests**
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- **Extremely randomized trees**
 - Random attribute selection

Decision Trees

- **Example:**
 - “Classify Saturday mornings according to whether they’re suitable for playing tennis.”

Elements

- Each node specifies a test for some attribute.
- Each branch corresponds to a possible value of the attribute.
CART Framework

• Six general questions
 1. Binary or multi-valued problem?
 • I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 • I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 • I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 • Goal: reduce overfitting.
 5. How to deal with impure nodes?
 • I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?

Picking a Good Splitting Feature

• Goal
 • Select the query (=split) that decreases impurity the most
 \[\Delta i(N) = i(N) - P_L i(N_L) - (1 - P_L) i(N_R) \]

• Impurity measures
 • Entropy impurity (information gain):
 \[i(N) = - \sum_{j} p(C_j|N) \log_2 p(C_j|N) \]
 • Gini impurity:
 \[i(N) = \sum_{j} p(C_j|N)^2 = \frac{1}{2} \left[1 - \sum_{j} p^2(C_j|N) \right] \]

Recap: Decision Trees - Summary

• Properties
 • Simple learning procedure, fast evaluation.
 • Can be applied to metric, nominal, or mixed data.
 • Often yield interpretable results.

• Limitations
 • Often produce noisy (bushy) or weak (stunted) classifiers.
 • Do not generalize too well.
 • Training data fragmentation:
 • As tree progresses, splits are selected based on less and less data.
 • Overtraining and undertraining:
 • Deep trees: fit the training data well, will not generalize well to new test data.
 • Shallow trees: not sufficiently refined.
 • Stability
 • Trees can be very sensitive to details of the training points.
 • If a single data point is only slightly shifted, a radically different tree may come out!
 • Result of discrete and greedy learning procedure.
 • Expensive learning step
 • Mostly due to costly selection of optimal split.

Decision Trees - Computational Complexity

• Given
 • Data points \(\{x_1, \ldots, x_N \} \)
 • Dimensionality \(D \)

• Complexity
 • Storage: \(O(N) \)
 • Test runtime: \(O(\log N) \)
 • Training runtime: \(O(DN^2 \log N) \)
 • Most expensive part.
 • Critical step: selecting the optimal splitting point.
 • Need to check \(D \) dimensions, for each need to sort \(N \) data points.
 \(O(DN \log N) \)
Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Randomized Decision Trees (Amit & Geman 1997)

- Decision trees: main effort on finding good split
 - Training runtime: $O(DN^2 \log N)$ with $K \ll D$.
 - This is what takes most effort in practice.
 - Especially cumbersome with many attributes (large D).
- Idea: randomize attribute selection
 - No longer look for globally optimal split.
 - Instead randomly use subset of K attributes on which to base the split.
 - Choose best splitting attribute e.g. by maximizing the information gain (ΔE):
 \[\Delta E = \sum_{k=1}^{K} \left(\sum_{j=1}^{N} p_j \log_2(p_j) \right) \]
 - Faster training: $O(KN^2 \log N)$ with $K \ll D$.
 - Use very simple binary feature tests.
 - Typical choice
 - $K = 10$ for root node.
 - $K = 100d$ for node at level d.
- Effect of random split
 - Of course, the tree is no longer as powerful as a single classifier…
 - But we can compensate by building several trees.

Ensemble Combination

- Ensemble combination
 - Tree leaves (l,η) store posterior probabilities of the target classes.
 - Combine the output of several trees by averaging their posteriors (Bayesian model combination)
 \[p(C | x) = \frac{1}{T} \sum_{t=1}^{T} p_{\eta_t}(C | x) \]

Applications: Character Recognition

- Computer Vision: Optical character recognition
 - Classify small (14x20) images of hand-written characters/digits into one of 10 or 26 classes.
 - Simple binary features
 - Tests for individual binary pixel values.
 - Organized in randomized tree.

Applications: Character Recognition

- Image patches ("Tags")
 - Randomly sampled 4x4 patches
 - Construct a randomized tree based on binary single-pixel tests
 - Each leaf node corresponds to a "patch class" and produces a tag
 - Representation of digits ("Queries")
 - Specific spatial arrangements of tags
 - An image answers "yes" if any such structure is found anywhere
 - How do we know which spatial arrangements to look for?
Applications: Character Recognition

- **Answer:** Create a second-level decision tree!
 - Start with two tags connected by an arc
 - Search through extensions of confirmed queries (or rather through a subset of them, there are lots!)
 - Select query with best information gain
 - Recurse...

- **Classification**
 - Average estimated posterior distributions stored in the leaves.

Applications: Fast Keypoint Detection

- **Computer Vision:** fast keypoint detection
 - Detect keypoints: small patches in the image used for matching
 - Classify into one of ~200 categories (visual words)

- **Extremely simple features**
 - E.g. pixel value in a color channel (CIELab)
 - E.g. sum of two points in the patch
 - E.g. difference of two points in the patch
 - E.g. absolute difference of two points

- **Create forest of randomized decision trees**
 - Each leaf node contains probability distribution over 200 classes
 - Can be updated and re-normalized incrementally.

Topics of This Lecture

- **Randomized Decision Trees**
 - Randomized attribute selection

- **Random Forests**
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
 - Extremely randomized trees
 - Random attribute selection
 - Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Random Forests (Breiman 2001)

- **General ensemble method**
 - Idea: Create ensemble of many (very simple) trees.

- **Empirically very good results**
 - Often as good as SVMs (and sometimes better!)
 - Often as good as Boosting (and sometimes better!)

- **Standard decision trees:** main effort on finding good split
 - Random Forests trees put very little effort in this.
 - CART algorithm with Gini coefficient, no pruning.
 - Each split is only made based on a random subset of the available attributes.
 - Trees are grown fully (important!).

- **Main secret**
 - Injecting the “right kind of randomness”.

Random Forests - Algorithmic Goals

- **Create many trees (50 - 1,000)**
- **Inject randomness into trees such that**
 - Each tree has maximal strength
 - I.e., a fairly good model on its own
 - Each tree has minimum correlation with the other trees.
 - I.e., the errors tend to cancel out.

- **Ensemble of trees votes for final result**
 - Simple majority vote for category.

- **Alternative (Friedman)**
 - Optimally reweight the trees via regularized regression (lasso).
Random Forests - Injecting Randomness (1)

- Bootstrap sampling process
 - Select a training set by choosing \(N \) times with replacement from all \(N \) available training examples.
 - On average, each tree is grown on only \(~63\%\) of the original training data.
 - Remaining \(37\%\) “out-of-bag” (OOB) data used for validation.
 - Provides ongoing assessment of model performance in the current tree.
 - Allows fitting to small data sets without explicitly holding back any data for testing.
 - Error estimate is unbiased and behaves as if we had an independent test sample of the same size as the training sample.

Random Forests - Injecting Randomness (2)

- Random attribute selection
 - For each node, randomly choose subset of \(K \) attributes on which the split is based (typically \(K = \sqrt{N} \)).
 - Faster training procedure
 - Need to test only few attributes.
 - Minimizes inter-tree dependence
 - Reduce correlation between different trees.
 - Each tree is grown to maximal size and is left unpruned
 - Trees are deliberately overfit
 - Become some form of nearest-neighbor predictor.

Bet You’re Asking...

How can this possibly ever work???

A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...
A Graphical Interpretation

Different trees induce different partitions on the data.

By combining them, we obtain a finer subdivision of the feature space...

...which at the same time also better reflects the uncertainty due to the bootstrapped sampling.

You Can Try It At Home...

- Free implementations available
 - Original RF implementation by Breiman & Cutler
 - http://www.stat.berkeley.edu/users/breiman/RandomForests/
 - Papers, documentation, and code...
 - In Fortran 77.
 - But also newer version available in Fortran 90!
 - Fast Random Forest implementation for Java (Weka)
 - http://code.google.com/p/fast-random-forest/

A Case Study in Deconstructivism...

- What we’ve done so far
 - Take the original decision tree idea.
 - Throw out all the complicated bits (pruning, etc.).
 - Learn on random subset of training data (bootstrapping/bagging).
 - Select splits based on random choice of candidate queries.
 - So as to maximize information gain.
 - Complexity: \(O(N^2 \log N) \)
 - Ensemble of weaker classifiers.

- How can we further simplify that?
 - Main effort still comes from selecting the optimal split (from reduced set of options).
 - Simply choose a random query at each node.
 - Complexity: \(O(N) \)
 - Extremely randomized decision trees

Summary: Random Forests

- Properties
 - Very simple algorithm.
 - Resistant to overfitting - generalizes well to new data.
 - Faster training
 - Extensions available for clustering, distance learning, etc.

- Limitations
 - Memory consumption
 - Decision tree construction uses much more memory.
 - Well-suited for problems with little training data
 - Little performance gain when training data is really large.

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection
- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis
- Extremely randomized trees
 - Random attribute selection
 - Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

Extremely Randomized Decision Trees

- Random queries at each node...
 - Tree gradually develops from a classifier to a flexible container structure.
 - Node queries define (randomly selected) structure.
 - Each leaf node stores posterior probabilities

- Learning
 - Patches are “dropped down” the trees.
 - Only pairwise pixel comparisons at each node.
 - Directly update posterior distributions at leaves
 - Very fast procedure, only few pixel-wise comparisons
 - No need to store the original patches!
Performance Comparison

- **Results**
 - Almost equal performance for random tests when a sufficient number of trees is available (and much faster to train!).

From Trees to Ferns…

- **Observation**
 - If we select the node queries randomly anyway, what is the point of choosing different ones for each node?
 - Keep the same query for all nodes at a certain level.
 - This effectively enumerates all \(2^M\) possible outcomes of the \(M\) tree queries.
 - Tree can be collapsed into a fern-like structure.

Modeling the Joint Distribution

- **Full Joint**
 - Model all correlations between features

 \[p(f_1, \ldots, f_{N_f} | C_k) \]

 \(\Rightarrow \) Model with \(2^{N_f}\) parameters, not feasible to learn.

- **Naïve Bayes classifier**
 - Assumption: all features are independent.

 \[p(f_1, \ldots, f_{N_f} | C_k) = \prod_{i=1}^{N_f} p(f_i | C_k) \]

 \(\Rightarrow \) Too simplistic, assumption does not really hold!

 \(\Rightarrow \) Naïve Bayes model ignores correlation between features.

Topics of This Lecture

- Randomized Decision Trees
 - Randomized attribute selection

- Recap: Random Forests
 - Bootstrap sampling
 - Ensemble of randomized trees
 - Posterior sum combination
 - Analysis

- Extremely randomized trees
 - Random attribute selection

- Ferns
 - Fern structure
 - Semi-Naïve Bayes combination
 - Applications

What Does This Mean?

- **Interpretation of the decision tree**
 - We model the class conditional probabilities of a large number of binary features (the node queries).

 - **Notation**
 - \(f_i\): Binary feature
 - \(N_f\): Total number of features in the model.
 - \(C_k\): Target class

 - Given \(f_1, \ldots, f_{N_f}\), we want to select class \(C_k\) such that

 \[k = \arg \max_k p(C_k | f_1, \ldots, f_{N_f}) \]

 - Assuming a uniform prior over classes, this is equal to

 \[k = \arg \max_k p(f_1, \ldots, f_{N_f} | C_k) \]

 - Main issue: How do we model the joint distribution?

Modeling the Joint Distribution

- **Decision tree**
 - Each path from the root to a leaf corresponds to a specific combination of feature outcomes, e.g.

 \[p_{\text{leaf}}(C_k) = p(f_{m1} = 1, f_{m2} = 0, \ldots, f_{md} = 1 | C_k) \]

 - Those path outcomes are independent, therefore

 \[p(f_1, \ldots, f_{N_f} | C_k) \approx \prod_{m=1}^{M} p_{\text{leaf}}(C_k) \]

 - But not all feature outcomes are represented here…
Modeling the Joint Distribution

- Ferns
 - A fern F is defined as a set of S binary features (f_1, \ldots, f_S).
 - M: number of ferns, $N_f = S \cdot M$.
 - This represents a compromise:
 \[
 p(f_1, \ldots, f_N | C_k) \approx \prod_{j=1}^M p(F_j | C_k) = p(f_1, \ldots, f_S | C_k) \cdot p(f_{S+1}, \ldots, f_{2S} | C_k) \cdots
 \]
 Full joint inside fern Naïve Bayes between ferns

 ⇒ Model with $M \cdot 2^S$ parameters ("Semi-Naïve").
 ⇒ Flexible solution that allows complexity/performance tuning.

Ferns - Training

The tests compare the intensities of two pixels around the keypoint:

\[
 f_i = \begin{cases}
 1 & \text{if } I(x_i) \leq I(x_j) \\
 0 & \text{otherwise}
 \end{cases}
\]

Invariant to lighting change by any raising function.

Posterior probabilities:

\[
 P(f_1, f_2, \ldots, f_N | C = c_j)
\]

 interpretation

- Ferns are thus semi-naïve Bayes classifiers.
- They assume independence between sets of features (between the ferns)...
- ...and enumerate all possible outcomes inside each set.

- Interpretation
 - Combine the tests f_1, \ldots, f_N into a binary number.
 - Update the "fern leaf" corresponding to that number.

 Slide credit: Vincent Lepetit
Ferns - Training

Normalization:
\[\sum = 1 \]

Ferns - Training Results

Ferns - Recognition

Performance Comparison

- Results
 - Ferns perform as well as randomized trees (but are much faster)
 - Naïve Bayes combination better than averaging posteriors.
Keypoint Recognition in 10 Lines of Code

```c
1: for(int i = 0; i < H; i++) P[i] = 0.;
2: for(int k = 0; k < M; k++) {
3:   int index = 0, * d = D + k * 2 * S;
4:   for(int j = 0; j < S; j++) {
5:     index <<= 1;
6:     if (*(K + d[0]) < *(K + d[1]))
7:       index++;
8:     d += 2;
9:   }
10:   p = PF + k * shift2 + index * shift1;
11:   for(int i = 0; i < H; i++) P[i] += p[i];
}
```

Properties
- Very simple to implement;
- (Almost) no parameters to tune;
- Very fast.

Application: Keypoint Matching with Ferns

Application: Mobile Augmented Reality

Practical Issues - Selecting the Tests
- For a small number of classes
 - We can try several tests.
 - Retain the best one according to some criterion.
 - E.g. entropy, Gini
- When the number of classes is large
 - Any test does a decent job.

Summary
- We started from full decision trees...
 - Successively simplified the classifiers...
- ...and ended up with very simple randomized versions
 - Ensemble methods: Combination of many simple classifiers
 - Good overall performance
 - Very fast to train and to evaluate
- Common limitations of Randomized Trees and Ferns?
 - Need large amounts of training data!
 - In order to fill the many probability distributions at the leaves.
 - Memory consumption!
 - Linear in the number of trees.
 - Exponential in the tree depth.
 - Linear in the number of classes (histogram at each leaf!)

References and Further Reading
- Very recent topics, not covered sufficiently well in books yet...
- The original papers for Randomized Trees
- The original paper for Random Forests:
- The papers for Ferns: