Recap: Stacking

- **Idea**
 - Learn L classifiers (based on the training data)
 - Find a meta-classifier that takes as input the output of the L first-level classifiers.

- **Example**
 - Learn L classifiers with leave-one-out.
 - Interpret the prediction of the L classifiers as L-dimensional feature vector.
 - Learn "level-2" classifier based on the examples generated this way.

Recap: Bayesian Model Averaging

- **Model Averaging**
 - Suppose we have H different models $h = 1,...,H$ with prior probabilities $p(h)$.
 - Construct the marginal distribution over the data set
 \[p(X) = \sum_{h=1}^{H} p(X|h)p(h) \]

- **Average error of committee**
 - \[\overline{E_{COM}} = \frac{1}{M} \overline{E_{AV}} \]
 - This suggests that the average error of a model can be reduced by a factor of M simply by averaging M versions of the model!
 - Unfortunately, this assumes that the errors are all uncorrelated. In practice, they will typically be highly correlated.

Topics of This Lecture

- **Recap: AdaBoost**
 - Algorithm
 - Analysis
 - Extensions

- **Analysis**
 - Comparing Error Functions

- **Applications**
 - AdaBoost for face detection

- **Decision Trees**
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

- **AdaBoost**
 - Construct a strong classifier as a thresholded linear combination of the weighted weak classifiers:
 \[H(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_m h_m(x) \right) \]
Recap: AdaBoost - Algorithm

1. Initialization: Set \(w_n^{(1)} = \frac{1}{N} \) for \(n = 1, \ldots, N \).
2. For \(m = 1, \ldots, M \) iterations
 a) Train a new weak classifier \(h_m(x) \) using the current weighting coefficients \(W_m \) by minimizing the weighted error function
 \[J_m = \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n) \]
 \(I(0) = 1 \) if \(d \) is true
 \(I(1) = 0 \) otherwise
 b) Estimate the weighted error of this classifier on \(X \):
 \[\varepsilon_m = \frac{1}{N} \sum_{n=1}^{N} w_n^{(m)} I(h_m(x_n) \neq t_n) \]
 c) Calculate a weighting coefficient for \(h_m(x) \):
 \[\alpha_m = \ln \left(\frac{1 - \varepsilon_m}{\varepsilon_m} \right) \]
 d) Update the weighting coefficients:
 \[w_n^{(m+1)} = w_n^{(m)} \exp \left(\alpha_m I(h_m(x_n) \neq t_n) \right) \]

Recap: Error Functions

- \(t_n \subset \{1, 1\} \)
- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes “too correct” data points.
 - Generally does not lead to good classifiers.
- “Hinge error” used in SVMs
 - Zero error for points outside the margin \((z_n > 1) \) ⇒ sparsity
 - Linear penalty for misclassified points \((z_n < 1) \) ⇒ robustness
 - Not differentiable around \(z_n = 1 \) ⇒ Cannot be optimized directly.

Topics of This Lecture

- Recap: AdaBoost
 - Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
 - Applications
 - AdaBoost for face detection
 - Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
- Historical development: ID3, C4.5
Discussion: AdaBoost Error Function

- Exponential error used in AdaBoost
 - Continuous approximation to ideal misclassification function.
 - Sequential minimization leads to simple AdaBoost scheme.
 - Properties?

- Sensitivity to outliers!

Discussion: Other Possible Error Functions

- "Cross-entropy error" used in Logistic Regression
 - Similar to exponential error for $z > 0$.
 - Only grows linearly with large negative values of z.
 - Make AdaBoost more robust by switching to this error function.
 - "GentleBoost"

Summary: AdaBoost

- Properties
 - Simple combination of multiple classifiers.
 - Easy to implement.
 - Can be used with many different types of classifiers.
 - None of them needs to be too good on its own.
 - In fact, they only have to be slightly better than chance.
 - Commonly used in many areas.
 - Empirically good generalization capabilities.

- Limitations
 - Original AdaBoost sensitive to misclassified training data points.
 - Because of exponential error function.
 - Improvement by GentleBoost
 - Single-class classifier
 - Multiclass extensions available

Example Application: Face Detection

- Frontal faces are a good example of a class where global appearance models + a sliding window detection approach fit well:
 - Regular 2D structure
 - Center of face almost shaped like a "patch"/window

- Now we’ll take AdaBoost and see how the Viola-Jones face detector works
Feature extraction

"Rectangular" filters

Feature output is difference between adjacent regions

Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images → scale features directly for same cost

Integral image

Value at (x,y) is sum of pixels above and to the left of (x,y)

\[I(x,y) = \sum_{x'=0}^{x} \sum_{y'=0}^{y} I(x',y') \]

Feature extraction

Value at (x,y) is sum of pixels above and to the left of (x,y)

\[I(x,y) = \sum_{x'=0}^{x} \sum_{y'=0}^{y} I(x',y') \]

Large Library of Filters

Considering all possible filter parameters: position, scale, and type:

180,000+ possible features associated with each 24 x 24 window

Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for Feature+Classifier Selection

• Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (non-faces) training examples, in terms of weighted error.

Resulting weak classifier:

\[h_t(x) = \begin{cases} +1 & \text{if } f_t(x) > \theta_t \\ -1 & \text{otherwise} \end{cases} \]

For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost for Efficient Feature Selection

• Image features = weak classifiers

• For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weight on this features is a simple function of error rate
 - Reweight examples

Viola-Jones Face Detector: Results

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004. (First version appeared at CVPR 2001)
Viola-Jones Face Detector: Results

![Image](220x667 to 269x680)

Slide credit: Kristen Grauman

B. Leibe

25

References and Further Reading

- More information on Classifier Combination and Boosting can be found in Chapters 14.1-14.3 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

- A more in-depth discussion of the statistical interpretation of AdaBoost is available in the following paper:

Topics of This Lecture

- Recap: AdaBoost
 - Algorithm
 - Analysis
 - Extensions
- Analysis
 - Comparing Error Functions
- Applications
 - AdaBoost for face detection
- Decision Trees
 - CART
 - Impurity measures, Stopping criterion, Pruning
 - Extensions, Issues
 - Historical development: ID3, C4.5

Decision Trees

- Very old technique
 - Origin in the 60s, might seem outdated.
- But...
 - Can be used for problems with nominal data
 - E.g. attributes color ∈ {red, green, blue} or weather ∈ {sunny, rainy}.
 - Discrete values, no notion of similarity or even ordering.
 - Interpretable results
 - Learned trees can be written as sets of if-then rules.
 - Methods developed for handling missing feature values.
 - Successfully applied to broad range of tasks
 - E.g. Medical diagnosis
 - E.g. Credit risk assessment of loan applicants
 - Some interesting novel developments building on top of them...

Decision Trees

- Example:
 - "Classify Saturday mornings according to whether they’re suitable for playing tennis."

Decision Trees

- Elements
 - Each node specifies a test for some attribute.
 - Each branch corresponds to a possible value of the attribute.
Decision Trees

Assumption
- Links must be mutually distinct and exhaustive
- I.e. one and only one link will be followed at each step.

Interpretability
- Information in a tree can then be rendered as logical expressions.
- In our example:

 \[
 \text{Outlook} = \text{Sunny} \land \text{Humidity} = \text{Normal} \lor (\text{Outlook} = \text{Overcast}) \lor (\text{Outlook} = \text{Rain} \land \text{Wind} = \text{Weak})
 \]

Training Decision Trees

- Finding the optimal decision tree is NP-hard...
- Common procedure: Greedy top-down growing
 - Start at the root node.
 - Progressively split the training data into smaller and smaller subsets.
 - In each step, pick the best attribute to split the data.
 - If the resulting subsets are pure (only one label) or if no further attribute can be found that splits them, terminate the tree.
 - Else, recursively apply the procedure to the subsets.

CART Framework

- Six general questions
 1. Binary or multi-valued problem?
 - I.e. how many splits should there be at each node?
 2. Which property should be tested at a node?
 - I.e. how to select the query attribute?
 3. When should a node be declared a leaf?
 - I.e. when to stop growing the tree?
 4. How can a grown tree be simplified or pruned?
 - Goal: reduce overfitting.
 5. How to deal with impure nodes?
 - I.e. when the data itself is ambiguous.
 6. How should missing attributes be handled?

CART - 1. Number of Splits

- Each multi-valued tree can be converted into an equivalent binary tree:

 ⇒ Only consider binary trees here...

CART - 2. Picking a Good Splitting Feature

- **Goal**
 - Want a tree that is as simple/small as possible (Occam’s razor).
 - But: Finding a minimal tree is an NP-hard optimization problem.

- **Greedy top-down search**
 - Efficient, but not guaranteed to find the smallest tree.
 - Seek a property \(T \) at each node \(N \) that makes the data in the child nodes as pure as possible.
 - For formal reasons more convenient to define impurity \(i(N) \).
 - Several possible definitions explored.
CART - Impurity Measures

- Entropy impurity
 \[i(N) = - \sum_j p(C_j|N) \log_2 p(C_j|N) \]
 "Reduction in entropy = gain in information."

- Gini impurity (variance impurity)
 \[i(N) = \sum_{j \neq k} p(C_j|N)p(C_k|N) \]
 \[= \frac{1}{2} \left[\sum_j p^2(C_j|N) \right] \]
 "Expected error rate at node N if the category label is selected randomly."

CART - Picking a Good Splitting Feature

• Application
 - Select the query that decreases impurity the most

• Multiway generalization (gain ratio impurity):
 - Maximize
 \[\Delta i(s) = \frac{1}{Z} \left(i(N) - \sum_{k=1}^K p_k i(N_k) \right) \]
 - where the normalization factor ensures that large K are not inherently favored:
 \[Z = - \sum_{k=1}^K p_k \log_2 p_k \]

CART - 3. When to Stop Splitting

• Problem: Overfitting
 - Learning a tree that classifies the training data perfectly may not lead to the tree with the best generalization to unseen data.
 - Reasons
 - Noise or errors in the training data.
 - Poor decisions towards the leaves of the tree that are based on very little data.

• Typical behavior
CART - Overfitting Prevention (Pruning)
- Two basic approaches for decision trees
 - Prepruning: Stop growing tree as some point during top-down construction when there is no longer sufficient data to make reliable decisions.
 - Postpruning: Grow the full tree, then remove subtrees that do not have sufficient evidence.
- Label leaf resulting from pruning with the majority class of the remaining data, or a class probability distribution.

\[C_N = \arg \max_k p(C_k|N) \]

\[p(C_k|N) \]

Decision Trees - Handling Missing Attributes
- During training
 - Calculate impurities at a node using only the attribute information present.
 - E.g. 3-dimensional data, one point is missing attribute \(x_3 \).
 - Compute possible splits on \(x_1 \) using all \(N \) points.
 - Compute possible splits on \(x_2 \) using all \(N \) points.
 - Compute possible splits on \(x_3 \) using \(N-1 \) non-deficient points.
 - Choose split which gives greatest reduction in impurity.
- During testing
 - Cannot handle test patterns that are lacking the decision attribute!
 - In addition to primary split, store an ordered set of surrogate splits that try to approximate the desired outcome based on different attributes.

Decision Trees - Feature Choice
- Best results if proper features are used
 - Preprocessing to find important axes often pays off.

Decision Trees - Non-Uniform Cost
- Incorporating category priors
 - Often desired to incorporate different priors for the categories.
 - Solution: weight samples to correct for the prior frequencies.
- Incorporating non-uniform loss
 - Create loss matrix \(\lambda_{ij} \)
 - Loss can easily be incorporated into Gini impurity
 \[i(N) = \sum_{ij} \lambda_{ij} p(C_i)p(C_j) \]

Historical Development
- ID3 (Quinlan 1986)
 - One of the first widely used decision tree algorithms.
 - Intended to be used with nominal (unordered) variables
 - Real variables are first binned into discrete intervals.
 - General branching factor
 - Use gain ratio impurity based on entropy (information gain) criterion.
 - Algorithm
 - Select attribute \(a \) that best classifies examples, assign it to root.
 - For each possible value \(a \) of \(a \)
 - Add new tree branch corresponding to test \(a = a \).
 - If example_list(\(a \)) is empty, add leaf node with most common label in example_list(\(a \)).
 - Else, recursively call ID3 for the subtree with attributes \(A \setminus a \).
Historical Development

- C4.5 (Quinlan 1993)
 - Improved version with extended capabilities.
 - Ability to deal with real-valued variables.
 - Multifolds splits are used with nominal data.
 - Using gain ratio impurity based on entropy (information gain) criterion.
 - Heuristics for pruning based on statistical significance of splits.
 - Rule post-pruning

- Main difference to CART
 - Strategy for handling missing attributes.
 - When missing feature is queried, C4.5 follows all B possible answers.
 - Decision is made based on all B possible outcomes, weighted by decision probabilities at node N.

Decision Trees - Computational Complexity

- Given
 - Data points $\{x_1, \ldots, x_n\}$
 - Dimensionality D

- Complexity
 - Storage: $O(N)$
 - Test runtime: $O(\log N)$
 - Training runtime: $O(DN^2 \log N)$
 - Most expensive part.
 - Critical step: selecting the optimal splitting point.
 - Need to check D dimensions, for each need to sort N data points.
 - $O(DN \log N)$

Summary: Decision Trees

- Properties
 - Simple learning procedure, fast evaluation.
 - Can be applied to metric, nominal, or mixed data.
 - Often yield interpretable results.

- Limitations
 - Often produce noisy (bushy) or weak (stunted) classifiers.
 - Do not generalize too well.
 - Training data fragmentation:
 - As tree progresses, splits are selected based on less and less data.
 - Overtraining and undertraining:
 - Deep trees: fit the training data well, will not generalize well to new test data.
 - Shallow trees: not sufficiently refined.
 - Stability
 - Trees can be very sensitive to details of the training points.
 - If a single data point is only slightly shifted, a radically different tree may come out!
 - Result of discrete and greedy learning procedure.
 - Expensive learning step
 - Mostly due to costly selection of optimal split.

References and Further Reading

- More information on Decision Trees can be found in Chapters 8.2-8.4 of Duda & Hart.

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000