Machine Learning - Lecture 8

Linear Support Vector Machines

12.05.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
Course Outline

- **Fundamentals (2 weeks)**
 - Bayes Decision Theory
 - Probability Density Estimation

- **Discriminative Approaches (5 weeks)**
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- **Generative Models (4 weeks)**
 - Bayesian Networks
 - Markov Random Fields
Recap: Generalization and Overfitting

- **Goal:** predict class labels of new observations
 - Train classification model on limited training set.
 - The further we optimize the model parameters, the more the training error will decrease.
 - However, at some point the test error will go up again.
 \[\Rightarrow \textit{Overfitting to the training set!} \]
Recap: Risk

- **Empirical risk**
 - Measured on the training/validation set
 \[
 R_{emp}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i; \alpha))
 \]

- **Actual risk (= Expected risk)**
 - Expectation of the error on all data.
 \[
 R(\alpha) = \int L(y_i, f(x; \alpha)) dP_{X,Y}(x, y)
 \]

 - \(P_{X,Y}(x, y)\) is the probability distribution of \((x,y)\).
 It is fixed, but typically unknown.

 \(\Rightarrow\) In general, we can’t compute the actual risk directly!

Slide adapted from Bernt Schiele
Recap: Statistical Learning Theory

• Idea
 - Compute an upper bound on the actual risk based on the empirical risk
 \[R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h) \]
 - where
 - \(N \): number of training examples
 - \(p^* \): probability that the bound is correct
 - \(h \): capacity of the learning machine ("VC-dimension")

Slide adapted from Bernt Schiele
Recap: VC Dimension

• Vapnik-Chervonenkis dimension
 - Measure for the capacity of a learning machine.

• Formal definition:
 - If a given set of \(\ell \) points can be labeled in all possible \(2^\ell \) ways, and for each labeling, a member of the set \(\{ f(\alpha) \} \) can be found which correctly assigns those labels, we say that the set of points is shattered by the set of functions.

 - The **VC dimension** for the set of functions \(\{ f(\alpha) \} \) is defined as the maximum number of training points that can be shattered by \(\{ f(\alpha) \} \).
Recap: Upper Bound on the Risk

• Important result (Vapnik 1979, 1995)
 ➢ With probability $(1-\eta)$, the following bound holds

\[
R(\alpha) \cdot R_{emp}(\alpha) + \sqrt{\frac{h(\log(2N/h) + 1)}{N}} - \log(\eta/4)
\]

 “VC confidence”

➢ This bound is independent of $P_{X,Y}(x,y)$!
➢ If we know h (the VC dimension), we can easily compute the risk bound

\[
R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h)
\]
Recap: Structural Risk Minimization

• How can we implement Structural Risk Minimization?

\[R(\alpha) \cdot R_{emp}(\alpha) + \epsilon(N, p^*, h) \]

• Classic approach
 - Keep \(\epsilon(N, p^*, h) \) constant and minimize \(R_{emp}(\alpha) \).
 - \(\epsilon(N, p^*, h) \) can be kept constant by controlling the model parameters.

• Support Vector Machines (SVMs)
 - Keep \(R_{emp}(\alpha) \) constant and minimize \(\epsilon(N, p^*, h) \).
 - In fact: \(R_{emp}(\alpha) = 0 \) for separable data.
 - Control \(\epsilon(N, p^*, h) \) by adapting the VC dimension (controlling the “capacity” of the classifier).

Slide credit: Bernt Schiele
Topics of This Lecture

- **Linear Support Vector Machines**
 - Lagrangian (primal) formulation
 - Dual formulation
 - Discussion

- **Linearly non-separable case**
 - Soft-margin classification
 - Updated formulation

- **Nonlinear Support Vector Machines**
 - Nonlinear basis functions
 - The Kernel trick
 - Mercer’s condition
 - Popular kernels

- **Applications**
Revisiting Our Previous Example...

- How to select the classifier with the best generalization performance?
 - Intuitively, we would like to select the classifier which leaves maximal “safety room” for future data points.
 - This can be obtained by maximizing the margin between positive and negative data points.
 - It can be shown that the larger the margin, the lower the corresponding classifier’s VC dimension.

- The SVM takes up this idea
 - It searches for the classifier with maximum margin.
 - Formulation as a convex optimization problem
 ⇒ Possible to find the globally optimal solution!
Support Vector Machine (SVM)

- Let’s first consider linearly separable data
 - N training data points $\{(x_i, y_i)\}_{i=1}^{N}$, $x_i \in \mathbb{R}^d$
 - Target values $t_i \in \{-1, 1\}$
 - Hyperplane separating the data

$$w^T x + b = 0$$
Support Vector Machine (SVM)

- Margin of the hyperplane: \(d_- + d_+ \)
 - \(d_+ \): distance to nearest pos. training example
 - \(d_- \): distance to nearest neg. training example

- We can always choose \(w, b \) such that \(d_- = d_+ = \frac{1}{\|w\|} \).

Slide adapted from Bernt Schiele

Image source: C. Burges, 1998
Support Vector Machine (SVM)

- Since the data is linearly separable, there exists a hyperplane with
 \[w^T x_n + b \geq +1 \quad \text{for} \quad t_n = +1 \]
 \[w^T x_n + b \cdot -1 \quad \text{for} \quad t_n = -1 \]

- Combined in one equation, this can be written as
 \[t_n (w^T x_n + b) \geq 1 \quad \forall n \]

\[\Rightarrow \] Canonical representation of the decision hyperplane.

 - The equation will hold exactly for the points on the margin
 \[t_n (w^T x_n + b) = 1 \]

 - By definition, there will always be at least one such point.

Slide adapted from Bernt Schiele
Support Vector Machine (SVM)

• We can choose w such that
 \[w^T x_n + b = +1 \quad \text{for one} \quad t_n = +1 \]
 \[w^T x_n + b = -1 \quad \text{for one} \quad t_n = -1 \]

• The distance between those two hyperplanes is then the margin
 \[d_- = d_+ = \frac{1}{||w||} \]
 \[d_- + d_+ = \frac{2}{||w||} \]

⇒ We can find the hyperplane with maximal margin by minimizing $||w||^2$.

Slide credit: Bernt Schiele
Support Vector Machine (SVM)

- **Optimization problem**
 - Find the hyperplane satisfying
 \[
 \arg \min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2
 \]
 under the constraints
 \[t_n (\mathbf{w}^T \mathbf{x}_n + b) \geq 1 \quad \forall n\]
 - Quadratic programming problem with linear constraints.
 - Can be formulated using Lagrange multipliers.

- **Who is already familiar with Lagrange multipliers?**
 - Let’s look at a real-life example...
Recap: Lagrange Multipliers

- Problem
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

 $f(x) = 0$
 $f(x) > 0$
 $f(x) < 0$

 - We want to maximize ∇K.
 - But we can only move parallel to the fence, i.e. along

 $\nabla \| K = \nabla K + \lambda \nabla f$

 with $\lambda \neq 0$.

Slide adapted from Mario Fritz
Recap: Lagrange Multipliers

- Problem
 - We want to maximize $K(x)$ subject to constraints $f(x) = 0$.
 - Example: we want to get as close as possible, but there is a fence.
 - How should we move?

\[
f(x) = 0 \quad f(x) > 0
\]

⇒ Optimize

\[
\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)
\]

\[
\frac{\partial L}{\partial x} = \nabla_{\parallel} K = 0
\]

\[
\frac{\partial L}{\partial \lambda} = f(x) = 0
\]
Recap: Lagrange Multipliers

Problem
- Now let’s look at constraints of the form $f(x) \geq 0$.
- Example: There might be a hill from which we can see better...
- Optimize $\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$

 - $f(x) = 0$
 - $f(x) < 0$

Two cases
- Solution lies on boundary
 $\Rightarrow f(x) = 0$ for some $\lambda > 0$
- Solution lies inside $f(x) > 0$
 \Rightarrow Constraint inactive: $\lambda = 0$
- In both cases
 $\Rightarrow \lambda f(x) = 0$
Recap: Lagrange Multipliers

- **Problem**
 - Now let’s look at constraints of the form $f(x) \geq 0$.
 - Example: There might be a hill from which we can see better...
 - Optimize $\max_{x, \lambda} L(x, \lambda) = K(x) + \lambda f(x)$

- **Two cases**
 - Solution lies on boundary $\Rightarrow f(x) = 0$ for some $\lambda > 0$
 - Solution lies inside $f(x) > 0$
 \Rightarrow Constraint inactive: $\lambda = 0$
 - In both cases $\Rightarrow \lambda f(x) = 0$

Karush-Kuhn-Tucker (KKT) conditions:

$$\lambda \geq 0$$

$$f(x) \geq 0$$

$$\lambda f(x) = 0$$
SVM - Lagrangian Formulation

- Find hyperplane minimizing $\|w\|^2$ under the constraints

$$t_n(w^T x_n + b) - 1 \geq 0 \quad \forall n$$

- Lagrangian formulation
 - Introduce positive Lagrange multipliers: $a_n \geq 0 \quad \forall n$
 - Minimize Lagrangian ("primal form")

$$L(w, b, a) = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n(w^T x_n + b) - 1 \right\}$$

- I.e., find w, b, and a such that

$$\frac{\partial L}{\partial b} = 0 \quad \Rightarrow \quad \sum_{n=1}^{N} a_n t_n = 0 \quad \frac{\partial L}{\partial w} = 0 \quad \Rightarrow \quad w = \sum_{n=1}^{N} a_n t_n x_n$$
SVM - Lagrangian Formulation

- Lagrangian primal form

\[
L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \{ t_n (w^T x_n + b) - 1 \}
= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \{ t_n y(x_n) - 1 \}
\]

- The solution of \(L_p \) needs to fulfill the KKT conditions

 - Necessary and sufficient conditions

\[
\begin{align*}
 a_n &\geq 0 \\
 t_n y(x_n) - 1 &\geq 0 \\
 a_n \{ t_n y(x_n) - 1 \} &= 0
\end{align*}
\]

KKT:

\[
\begin{align*}
 \lambda &\geq 0 \\
 f(x) &\geq 0 \\
 \lambda f(x) &= 0
\end{align*}
\]
SVM - Solution (Part 1)

• Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[w = \sum_{n=1}^{N} a_n t_n x_n \]
 - Because of the KKT conditions, the following must also hold
 \[a_n \left(t_n (w^T x_n + b) - 1 \right) = 0 \]
 - This implies that \(a_n > 0 \) only for training data points for which
 \(\left(t_n (w^T x_n + b) - 1 \right) = 0 \)

\[\Rightarrow \text{Only some of the data points actually influence the decision boundary!} \]
SVM - Support Vectors

- The training points for which \(a_n > 0 \) are called "support vectors".

- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.

\[\Rightarrow \text{Robustness to "too correct" points!} \]
SVM - Solution (Part 2)

- Solution for the hyperplane
 - To define the decision boundary, we still need to know b.
 - Observation: any support vector x_n satisfies

$$t_n y(x_n) = t_n \left(\sum_{m \in S} a_m t_m x_m^T x_n + b \right) = 1$$

 - Using $t_n^2 = 1$, we can derive: $b = t_n - \sum_{m \in S} a_m t_m x_m^T x_n$

 - In practice, it is more robust to average over all support vectors:

$$b = \frac{1}{N_S} \sum_{n \in S} \left(t_n - \sum_{m \in S} a_m t_m x_m^T x_n \right)$$

 - KKT:

$$f(x) \geq 0$$
SVM - Discussion (Part 1)

• Linear SVM
 - Linear classifier
 - Approximative implementation of the SRM principle.
 - In case of separable data, the SVM produces an empirical risk of zero with minimal value of the VC confidence (i.e. a classifier minimizing the upper bound on the actual risk).
 - SVMs thus have a “guaranteed” generalization capability.
 - Formulation as convex optimization problem.
 ⇒ Globally optimal solution!

• Primal form formulation
 - Solution to quadratic prog. problem in M variables is in $O(M^3)$.
 - Here: D variables ⇒ $O(D^3)$
 - Problem: scaling with high-dim. data (“curse of dimensionality”)

Slide adapted from Bernt Schiele
SVM - Dual Formulation

- Improving the scaling behavior: rewrite L_p in a dual form

\[
L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n (w^T x_n + b) - 1 \right\}
\]

\[
= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n - b \sum_{n=1}^{N} a_n t_n + \sum_{n=1}^{N} a_n
\]

- Using the constraint $\sum_{n=1}^{N} a_n t_n = 0$, we obtain

\[
\frac{\partial L_p}{\partial b} = 0
\]
SVM - Dual Formulation

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n w^T x_n + \sum_{n=1}^{N} a_n \]

- Using the constraint \(w = \sum_{n=1}^{N} a_n t_n x_n \), we obtain \(\frac{\partial L_p}{\partial w} = 0 \)

\[L_p = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} a_n t_n \sum_{m=1}^{N} a_m t_m x_m^T x_n + \sum_{n=1}^{N} a_n \]

\[= \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) + \sum_{n=1}^{N} a_n \]
SVM - Dual Formulation

\[L = \frac{1}{2} \|w\|^2 - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) + \sum_{n=1}^{N} a_n \]

- Applying \(\frac{1}{2} \|w\|^2 = \frac{1}{2} w^T w \) and again using \(w = \sum_{n=1}^{N} a_n t_n x_n \)

\[\frac{1}{2} w^T w = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

- Inserting this, we get the **Wolfe dual**

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]
SVM - Dual Formulation

- Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

\[a_n \geq 0 \quad \forall n \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

- The hyperplane is given by the \(N_S \) support vectors:

\[w = \sum_{n=1}^{N_S} a_n t_n x_n \]
SVM - Discussion (Part 2)

• Dual form formulation
 - In going to the dual, we now have a problem in N variables (a_n).
 - Isn’t this worse??? We penalize large training sets!

• However...
 1. SVMs have sparse solutions: $a_n \neq 0$ only for support vectors!
 ⇒ This makes it possible to construct efficient algorithms
 - e.g. Sequential Minimal Optimization (SMO)
 - Effective runtime between $O(N)$ and $O(N^2)$.
 2. We have avoided the dependency on the dimensionality.
 ⇒ This makes it possible to work with infinite-dimensional feature
 spaces by using suitable basis functions $\phi(x)$.
 ⇒ We’ll see that in a few minutes...
So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
SVM - Non-Separable Data

- **Non-separable data**
 - I.e. the following inequalities cannot be satisfied for all data points:

 \[\mathbf{w}^T \mathbf{x}_n + b \geq +1 \quad \text{for} \quad t_n = +1 \]

 \[\mathbf{w}^T \mathbf{x}_n + b \cdot -1 \leq -1 \quad \text{for} \quad t_n = -1 \]

 - Instead use:

 \[\mathbf{w}^T \mathbf{x}_n + b \geq +1 - \xi_n \quad \text{for} \quad t_n = +1 \]

 \[\mathbf{w}^T \mathbf{x}_n + b \cdot -1 + \xi_n \leq -1 \quad \text{for} \quad t_n = -1 \]

 with “slack variables” \(\xi_n \geq 0 \quad \forall n \)
SVM - Soft-Margin Classification

- Slack variables
 - One slack variable $\xi_n \geq 0$ for each training data point.

- Interpretation
 - $\xi_n = 0$ for points that are on the correct side of the margin.
 - $\xi_n = |t_n - y(x_n)|$ for all other points (linear penalty).
 - We do not have to set the slack variables ourselves!
 \Rightarrow They are jointly optimized together with w.

Point on decision boundary: $\xi_n = 1$

Misclassified point: $\xi_n > 1$
SVM - Non-Separable Data

- **Separable data**
 - Minimize

- **Non-separable data**
 - Minimize

\[
\begin{align*}
\frac{1}{2} & \|w\|^2 \\
\frac{1}{2} & \|w\|^2 + C \sum_{n=1}^{N} \xi_n
\end{align*}
\]

Trade-off parameter!
SVM - New Primal Formulation

- **New SVM Primal: Optimize**

\[
L_p = \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n (t_n y(x_n) - 1 + \xi_n) - \sum_{n=1}^{N} \mu_n \xi_n
\]

 - **Constraint**
 \[t_n y(x_n) \geq 1 - \xi_n\]
 - **Constraint**
 \[\xi_n \geq 0\]

- **KKT conditions**

\[
\begin{align*}
 a_n &\geq 0 & \mu_n &\geq 0 \\
 t_n y(x_n) - 1 + \xi_n &\geq 0 & \xi_n &\geq 0 \\
a_n (t_n y(x_n) - 1 + \xi_n) &= 0 & \mu_n \xi_n &= 0
\end{align*}
\]

KKT:
\[
\begin{align*}
 \lambda &\geq 0 \\
 f(x) &\geq 0 \\
 \lambda f(x) &= 0
\end{align*}
\]
SVM - New Dual Formulation

- New SVM Dual: Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m (x_m^T x_n) \]

under the conditions

\[0 \cdot a_n \cdot C \]

\[\sum_{n=1}^{N} a_n t_n = 0 \]

- This is again a quadratic programming problem
 \[\Rightarrow \text{Solve as before... (more on that later)} \]

This is all that changed!
SVM - New Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples
 \[
 w = \sum_{n=1}^{N} a_n t_n x_n
 \]
 - Again sparse solution: \(a_n = 0\) for points outside the margin.
 - The slack points with \(\xi_n > 0\) are now also support vectors!
 - Compute \(b\) by averaging over all \(N_M\) points with \(0 < a_n < C\):
 \[
 b = \frac{1}{N_M} \sum_{n \in M} \left(t_n - \sum_{m \in M} a_m t_m x_m^T x_n \right)
 \]
Interpretation of Support Vectors

- Those are the hard examples!
 - We can visualize them, e.g. for face detection

![Graph showing support vectors for face detection](Image source: E. Osuna, F. Girosi, 1997)
So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
 \(\Rightarrow \) Slack variables.

- Only looked at linear decision boundaries...
 - This is not sufficient for many applications.
 - Want to generalize the ideas to non-linear boundaries.
Nonlinear SVM

• Linear SVMs
 - Datasets that are linearly separable with some noise work well:
 - But what are we going to do if the dataset is just too hard?

 How about... mapping data to a higher-dimensional space:

Slide credit: Raymond Mooney
Another Example

- Non-separable by a hyperplane in 2D

Slide credit: Bill Freeman
Another Example

- Separable by a surface in 3D

Slide credit: Bill Freeman
Nonlinear SVM - Feature Spaces

• General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

$$\Phi: \mathbf{x} \rightarrow \phi(\mathbf{x})$$
Nonlinear SVM

- General idea
 - Nonlinear transformation ϕ of the data points x_n:
 $$x \in \mathbb{R}^D \quad \phi : \mathbb{R}^D \rightarrow \mathcal{H}$$
 - Hyperplane in higher-dim. space \mathcal{H} (linear classifier in \mathcal{H})
 $$\mathbf{w}^T \phi(x) + b = 0$$
 - \Rightarrow Nonlinear classifier in \mathbb{R}^D.

Slide credit: Bernt Schiele
What Could This Look Like?

- **Example:**
 - Mapping to polynomial space, \(x, y \in \mathbb{R}^2 \):

\[
\phi(x) = \begin{bmatrix}
 x_1^2 \\
 \sqrt{2} x_1 x_2 \\
 x_2^2
\end{bmatrix}
\]

- **Motivation:** Easier to separate data in higher-dimensional space.
- **But wait - isn’t there a big problem?**
 - How should we evaluate the decision function?
Problem with High-dim. Basis Functions

- Problem
 - In order to apply the SVM, we need to evaluate the function
 \[y(x) = \mathbf{w}^T \phi(x) + b \]
 - Using the hyperplane, which is itself defined as
 \[\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(x_n) \]

⇒ What happens if we try this for a million-dimensional feature space \(\phi(x) \)?
 - Oh-oh...
Solution: The Kernel Trick

- Important observation
 - $\phi(x)$ only appears in the form of dot products $\phi(x)^T \phi(y)$:
 \[
 y(x) = w^T \phi(x) + b
 \]

 \[
 = \sum_{n=1}^{N} a_n t_n \phi(x_n)^T \phi(x) + b
 \]
 - Trick: Define a so-called **kernel function** $k(x,y) = \phi(x)^T \phi(y)$.
 - Now, in place of the dot product, use the kernel instead:
 \[
 y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b
 \]
 - The kernel function *implicitly* maps the data to the higher-dimensional space (without having to compute $\phi(x)$ explicitly)!
Back to Our Previous Example...

- **2nd degree polynomial kernel:**

\[
\phi(x)^T \phi(y) = \begin{bmatrix} x_1^2 \\ \sqrt{2} x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} y_1^2 \\ \sqrt{2} y_1 y_2 \\ y_2^2 \end{bmatrix} = x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2 = (x^T y)^2 =: k(x, y)
\]

Whenever we evaluate the kernel function \(k(x, y) = (x^T y)^2 \), we implicitly compute the dot product in the higher-dimensional feature space.
SVMs with Kernels

• Using kernels
 ➢ Applying the kernel trick is easy. Just replace every dot product by a kernel function...
 \[x^T y \rightarrow k(x, y) \]
 ➢ ...and we’re done.
 ➢ Instead of the raw input space, we’re now working in a higher-dimensional (potentially infinite dimensional!) space, where the data is more easily separable.

 “Sounds like magic...”

• Wait - does this always work?
 ➢ The kernel needs to define an implicit mapping to a higher-dimensional feature space \(\phi(x) \).
 ➢ When is this the case?

B. Leibe
Which Functions are Valid Kernels?

- Mercer’s theorem (modernized version):
 - Every positive definite symmetric function is a kernel.

- Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

\[
K = \begin{pmatrix}
 k(x_1,x_1) & k(x_1,x_2) & k(x_1,x_3) & \cdots & k(x_1,x_n) \\
 k(x_2,x_1) & k(x_2,x_2) & k(x_2,x_3) & & k(x_2,x_n) \\
 & \ddots & \ddots & \ddots & \ddots \\
 & & k(x_n,x_1) & k(x_n,x_2) & k(x_n,x_3) & \cdots & k(x_n,x_n)
\end{pmatrix}
\]

(positive definite = all eigenvalues are > 0)
Recap: Kernels Fulfilling Mercer’s Condition

- **Polynomial kernel**
 \[k(x, y) = (x^T y + 1)^p \]

- **Radial Basis Function kernel**
 \[k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\} \]
 e.g. Gaussian

- **Hyperbolic tangent kernel**
 \(\boxed{\text{Actually, this was wrong in the original SVM paper...}} \)
 \[k(x, y) = \tanh(\kappa x^T y + \delta) \]
 e.g. Sigmoid

(and many, many more...)

Slide credit: Bernt Schiele
Example: Bag of Visual Words Representation

- General framework in visual recognition
 - Create a codebook (vocabulary) of prototypical image features
 - Represent images as histograms over codebook activations
 - Compare two images by any histogram kernel, e.g. χ^2 kernel

$$k_{\chi^2}(h, h') = \exp \left(-\frac{1}{\gamma} \sum_j \frac{(h_j - h'_j)^2}{h_j + h'_j} \right)$$
Nonlinear SVM - Dual Formulation

• SVM Dual: Maximize

\[L_d(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_m, x_n) \]

under the conditions

\[0 \cdot a_n \cdot C \]
\[\sum_{n=1}^{N} a_n t_n = 0 \]

• Classify new data points using

\[y(x) = \sum_{n=1}^{N} a_n t_n k(x_n, x) + b \]
VC Dimension for Polynomial Kernel

- Polynomial kernel of degree p:
 \[k(x, y) = (x^T y)^p \]

 - Dimensionality of \mathcal{H}:
 \[\binom{D + p - 1}{p} \]

 - Example:
 \[
 \begin{align*}
 D &= 16 \times 16 = 256 \\
 p &= 4 \\
 \dim(\mathcal{H}) &= 183.181.376
 \end{align*}
 \]

 - The hyperplane in \mathcal{H} then has VC-dimension
 \[\dim(\mathcal{H}) + 1 \]
VC Dimension for Gaussian RBF Kernel

• Radial Basis Function:

$$k(x, y) = \exp \left\{ -\frac{(x - y)^2}{2\sigma^2} \right\}$$

- In this case, \mathcal{H} is infinite dimensional!

$$\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$

- Since only the kernel function is used by the SVM, this is no problem.

- The hyperplane in \mathcal{H} then has VC-dimension

$$\dim(\mathcal{H}) + 1 = \infty$$
VC Dimension for Gaussian RBF Kernel

- Intuitively
 - If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.

 However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.
Example: RBF Kernels

- Decision boundary on toy problem

RBF Kernel width (σ)
But... but... but...

- Don’t we risk overfitting with those enormously high-dimensional feature spaces?
 - No matter what the basis functions are, there are really only up to N parameters: $a_1, a_2,..., a_N$ and most of them are usually set to zero by the maximum margin criterion.
 - The data effectively lives in a low-dimensional subspace of \mathcal{H}.

- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?
 - Yes, but the maximum margin classifier “magically” solves this.
 - Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension.
 - Empirically, SVMs have very good generalization performance.
Theoretical Justification for Maximum Margins

- Vapnik has proven the following:
 - The class of optimal linear separators has VC dimension h bounded from above as
 \[
 h \leq \min \left\{ \left\lceil \frac{D^2}{\rho^2} \right\rceil, m_0 \right\} + 1
 \]
 where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_0 is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m_0 we can minimize the VC dimension by maximizing the margin ρ.

- Thus, complexity of the classifier is kept small regardless of dimensionality.

Slide credit: Raymond Mooney
SVM Demo

Applet from libsvm
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

B. Leibe
Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - SVM techniques have been applied to a variety of other tasks - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/
Summary: SVMs

- **Limitations**
 - How to select the right kernel?
 - Still something of a black art...
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $y(x)$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - There are techniques to reduce the effective SV set.
 - Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used
Topics of This Lecture

• Linear Support Vector Machines (Recap)
 ➢ Lagrangian (primal) formulation
 ➢ Dual formulation
 ➢ Discussion

• Linearly non-separable case
 ➢ Soft-margin classification
 ➢ Updated formulation

• Nonlinear Support Vector Machines
 ➢ Nonlinear basis functions
 ➢ The Kernel trick
 ➢ Mercer’s condition
 ➢ Popular kernels

• Applications
Example Application: Text Classification

• Problem:
 - Classify a document in a number of categories

 ![Diagram](image)

• Representation:
 - “Bag-of-words” approach
 - Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10,000 dimensions)
 - Few irrelevant features

• This was one of the first applications of SVMs
 - T. Joachims (1997)
Example Application: Text Classification

- **Results:**

<table>
<thead>
<tr>
<th></th>
<th>Bayes</th>
<th>Rocchio</th>
<th>C4.5</th>
<th>k-NN</th>
<th>SVM (poly) degree $d = 1$</th>
<th>SVM (poly) degree $d = 2$</th>
<th>SVM (poly) degree $d = 3$</th>
<th>SVM (poly) degree $d = 4$</th>
<th>SVM (poly) degree $d = 5$</th>
<th>SVM (poly) degree $d = 0.6$</th>
<th>SVM (poly) degree $d = 0.8$</th>
<th>SVM (poly) degree $d = 1.0$</th>
<th>SVM (poly) degree $d = 1.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>earn</td>
<td>95.9</td>
<td>96.1</td>
<td>96.1</td>
<td>97.3</td>
<td>98.2</td>
<td>98.4</td>
<td>98.5</td>
<td>98.4</td>
<td>98.3</td>
<td>98.5</td>
<td>98.5</td>
<td>98.4</td>
<td>98.3</td>
</tr>
<tr>
<td>acq</td>
<td>91.5</td>
<td>92.1</td>
<td>85.3</td>
<td>92.0</td>
<td>92.6</td>
<td>94.6</td>
<td>95.2</td>
<td>95.2</td>
<td>95.3</td>
<td>95.0</td>
<td>95.3</td>
<td>95.3</td>
<td>95.4</td>
</tr>
<tr>
<td>money-fx</td>
<td>62.9</td>
<td>67.6</td>
<td>69.4</td>
<td>78.2</td>
<td>66.9</td>
<td>72.5</td>
<td>75.4</td>
<td>74.9</td>
<td>76.2</td>
<td>74.0</td>
<td>75.4</td>
<td>76.3</td>
<td>75.9</td>
</tr>
<tr>
<td>grain</td>
<td>72.5</td>
<td>79.5</td>
<td>89.1</td>
<td>82.2</td>
<td>91.3</td>
<td>93.1</td>
<td>92.4</td>
<td>91.3</td>
<td>89.9</td>
<td>93.1</td>
<td>91.9</td>
<td>91.9</td>
<td>90.6</td>
</tr>
<tr>
<td>crude</td>
<td>81.0</td>
<td>81.5</td>
<td>75.5</td>
<td>85.7</td>
<td>86.0</td>
<td>87.3</td>
<td>88.6</td>
<td>88.9</td>
<td>87.8</td>
<td>88.9</td>
<td>89.0</td>
<td>88.9</td>
<td>88.2</td>
</tr>
<tr>
<td>trade</td>
<td>50.0</td>
<td>77.4</td>
<td>59.2</td>
<td>77.4</td>
<td>69.2</td>
<td>75.5</td>
<td>76.6</td>
<td>77.3</td>
<td>77.1</td>
<td>76.9</td>
<td>78.0</td>
<td>77.8</td>
<td>76.8</td>
</tr>
<tr>
<td>interest</td>
<td>58.0</td>
<td>72.5</td>
<td>49.1</td>
<td>74.0</td>
<td>69.8</td>
<td>63.3</td>
<td>67.9</td>
<td>73.1</td>
<td>76.2</td>
<td>74.4</td>
<td>75.0</td>
<td>76.2</td>
<td>76.1</td>
</tr>
<tr>
<td>ship</td>
<td>78.7</td>
<td>83.1</td>
<td>80.9</td>
<td>79.2</td>
<td>82.0</td>
<td>85.4</td>
<td>86.0</td>
<td>86.5</td>
<td>86.0</td>
<td>85.4</td>
<td>86.5</td>
<td>87.6</td>
<td>87.1</td>
</tr>
<tr>
<td>wheat</td>
<td>60.6</td>
<td>79.4</td>
<td>85.5</td>
<td>76.6</td>
<td>83.1</td>
<td>84.5</td>
<td>85.2</td>
<td>85.9</td>
<td>83.8</td>
<td>85.2</td>
<td>85.9</td>
<td>85.9</td>
<td>85.9</td>
</tr>
<tr>
<td>corn</td>
<td>47.3</td>
<td>62.2</td>
<td>87.7</td>
<td>77.9</td>
<td>86.0</td>
<td>86.5</td>
<td>85.3</td>
<td>85.7</td>
<td>83.9</td>
<td>85.1</td>
<td>85.7</td>
<td>85.7</td>
<td>84.5</td>
</tr>
<tr>
<td>microavg.</td>
<td>72.0</td>
<td>79.9</td>
<td>79.4</td>
<td>82.3</td>
<td>84.2</td>
<td>85.1</td>
<td>85.9</td>
<td>86.2</td>
<td>85.9</td>
<td>86.4</td>
<td>86.5</td>
<td>86.3</td>
<td>86.2</td>
</tr>
</tbody>
</table>

B. Leibe
Example Application: Text Classification

- This is also how you could implement a simple spam filter...

- Diagram showing:
 - Incoming email
 - Dictionary
 - Word activations
 - SVM
 - Mailbox
 - Trash
Example Application: OCR

- Handwritten digit recognition
 - US Postal Service Database
 - Standard benchmark task for many learning algorithms
Historical Importance

- **USPS benchmark**
 - 2.5% error: human performance

- **Different learning algorithms**
 - 16.2% error: Decision tree (C4.5)
 - 5.9% error: (best) 2-layer Neural Network
 - 5.1% error: LeNet 1 - (massively hand-tuned) 5-layer network

- **Different SVMs**
 - 4.0% error: Polynomial kernel (p=3, 274 support vectors)
 - 4.1% error: Gaussian kernel (σ=0.3, 291 support vectors)
Example Application: OCR

- Results
 - Almost no overfitting with higher-degree kernels.

<table>
<thead>
<tr>
<th>degree of polynomial</th>
<th>dimensionality of feature space</th>
<th>support vectors</th>
<th>raw error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>282</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>≈ 33000</td>
<td>227</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>≈ 1 × 10^6</td>
<td>274</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>≈ 1 × 10^9</td>
<td>321</td>
<td>4.2</td>
</tr>
<tr>
<td>5</td>
<td>≈ 1 × 10^{12}</td>
<td>374</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>≈ 1 × 10^{14}</td>
<td>377</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>≈ 1 × 10^{16}</td>
<td>422</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Example Application: Object Detection

- Sliding-window approach

 E.g. histogram representation (HOG)

 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.

[Dalal & Triggs, CVPR 2005]
Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
Many Other Applications

- Lots of other applications in all fields of technology
 - OCR
 - Text classification
 - Computer vision
 - ...
 - High-energy physics
 - Monitoring of household appliances
 - Protein secondary structure prediction
 - Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)
You Can Try It At Home...

- Lots of SVM software available, e.g.
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,...

 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...

- Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 \[\Rightarrow\] Easy to apply to your own problems!
References and Further Reading

- More information on SVMs can be found in Chapter 7.1 of Bishop’s book. You can also look at Schölkopf & Smola (some chapters available online).

 Christopher M. Bishop
 Pattern Recognition and Machine Learning
 Springer, 2006

 B. Schölkopf, A. Smola
 Learning with Kernels
 MIT Press, 2002

- A more in-depth introduction to SVMs is available in the following tutorial: