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Machine Learning o Lecture 8

Linear Support Vector Machines

12.05.2015
Bastian Leibe
RWTH Aachen
http://www.vision.rwth  -aachen.de/

leibe@Uvision.rwth -aachen.de

RWTH/JCHET]
Recap: Generalization and Overfitting

test error

training error

A Goal: predict class labels of new observations
« Train classification model on limited training set.

s The further we optimize the model parameters, the more the
training error  will decrease.

« However, at some point the test error will go up again.

Y Overfitting to the training set!
4

B. Leibe lmage source. B, Schiels

RWTH ACHET
Recap: Statistical Learning Theory
A Idea
a Compute an upper bound on the actual risk based on the

empirical risk
R(®) - Remp(® + 2(N;p%;h)
s where
N: number of training examples
p’: probability that the bound is correct

h: capacity of the l-damansgomag

ide adanted from Bernt Schiele B. Leibe
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Course Outline

A Fundamentals (2 weeks)
« Bayes Decision Theory
« Probability Density Estimation

A Discriminative Approaches (5 weeks)
o Linear Discriminant Functions
« Statistical Learning Theory & SVMs
« Ensemble Methods & Boosting
« Randomized Trees, Forests & Ferns

A Generative Models (4 weeks)
« Bayesian Networks
o Markov Random Fields

B. Leibe

Recap: Risk

A Empirical risk
« Measured on the training/validation set

[
Remp (®) = N L(yi;f (Xi;®))
i=1
A Actual risk (= Expected risk )
« Expectation of_the erroron all data.
R(® = L(yi:f (x;®)dPx;v (x;y)
» Px.y (X;Yy) is the probability distribution of (X ,y).
Itis f ixed, but typically unknown.
YIn general, we candt compute th
ide adaoted from Bernt Schiele B. Leibe °
RWTH ACHET
Recap: VC Dimension
A vapnik-Chervonenkis dimension E’“”:;:z
&)

s Measure for the capacity of a learning machine.

A Formal definition:
s Ifagivensetof ' ointscan be labeled in all possible w2 s,
and for each labeling, a member of the set  {f (®)} can be found
which correctly assigns those labels, we say that the set of
points is shattered by the set of functions.

The VC dimension for the set of functions ~ {f (®)} is defined as
the maximum number of training points that can be shattered

by {f(®)}.

B. Leibe
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Recap: Upper Bound on the Risk
A Important result (Vapnik 1979, 1995)
o+ With probability (1-"), the following bound holds
- h(log(2N=h) + 1) i log("=4)
N

R(®) ' Remp(®) +

O0VC confidence

Guaranteed risk
® =5 -
error)

This bound is independent of  Px .y (X;y)
If we know h (the VC dimension),

we can easily compute the risk
bound

R(® - Remp(® + 2(N;p™;h)

ide adapted from Bemt Schiele B. Leibe

Topics of This Lecture

A Linear Support Vector Machines
« Lagrangian (primal) formulation
o Dual formulation
o Discussion

A Linearly non -separable case
« Soft-margin classification
s Updated formulation

A Nonlinear Support Vector Machines
o Nonlinear basis functions
o The Kernel trick

« Mercer s
« Popular kernels

condition

A Applications

B. Leibe

Support Vector Machine (SVM)

ALetds first consider linear

o N training data points  f (Xi;¥i)gt;  x;i 2 R

. Target values ti2fj 119

X3

« Hyperplane separating the data

ide credit- Bernt Schiele B. Leibe
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RWTHACHE
Recap: Structural Risk Minimization

A How can we implement Structural Risk Minimization?

R(®) ) Remp(®) + Z(N; p“Q h)

A Classic approach
o Keep 2(N; p°; h)constant and minimize ~ Remp (®)
« 2(N;p”; h) can be kept constant by controlling the model
parameters.

A Support Vector Machines (SVMs)
o Keep Remp(®)constant and minimize
s Infact: Remp(®) = Ovr separable data.
» Control 2(N; p“; h)yy adapting the VC dimension
(controlling the ocapacityod¢ of

2(N;p%;h)

ide credit: Bernt Schiele B. Leibe

RWTHACHEN

Revisiting Our Previo
A How to select the classifier with

the best generalization performance?

« Intuitively, we would like to select

the classifier which leaves maximal
osafety roomé for f
This can be obtained by maximizing the
margin between positive and negative
data points.
It can be shown that the larger the margin, the lower the
corresponding classifierds VC d

Margin

A The SVM takes up this idea
« It searches for the classifier with maximum margin.

« Formulation as a convex optimization problem
Y Possible to find the globally optimal solution!

B. Leibe

RWTH ACHET
Support Vector Machine (SVM)
A Margin of the hyperplane:  d, + d.
o d,: distance to nearest pos.

training example

o d;: distance to nearest neg. ™.
training example A

o

1

» We can always choose w, bsuch that d; = di = K
17

lmage source: C Burges 199]

de adapted from Bernt Schiele B. Leibe
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Support Vector Machine (SVM)
A since the data is linearly separable, there exists a
hyperplane with
wix,+b, +1 for t,=+1
Wixp+b i1 for th=i1

A Combined in one equation, this can be written as
th(wW™xn+ b, 1 8n

Y Canonical representation of the decision hyperplane.
o The equation will hold exactly for the points

on the margin T
th(wW' xp+bh=1

« By definition, there will always be at least
one such point.

ide adapted from Bemt Schiele B. Leibe

RWTHAACHE

Support Vector Machine (SVM)

A Optimization problem
« Find the hyperplane satisfying

1,
argmin zkwk
gv;b 2
under the constraints

ta(W'x,+ b, 1 8n

« Quadratic programming problem with linear constraints.
« Can be formulated using Lagrange multipliers.

A Wnho'is already familiar with Lagrange multipliers?
s Letds | ookidtt @xmaepl eé

B. Leibe

Recap: Lagrange Multipliers

A Problem
« We want to maximize K (x) subject to constraints  f(x) = 0.

Example: we want to get as close as

possible, but there is a fence.

s How should we move?

f(x)=0 3

B. Leibe

K (x
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Support Vector Machine (SVM)

A We can choose w such that
wTx,+b=+1 forone t,=+1
wix,+b=j1 forone t,=i1

A The distance between those two hyperplanes is then the

margin
di =d, =

“Z[w
=~

d +d, = —
N
Y We can find thezhyperplane with maximal margin by

minimizing kwk

ide credit: Bernt Schiele B. Leibe

Recap: Lagrange Multipliers

A Problem
« We want to maximize K (x) subject to constraints f(x) = 0.

« Example: we want to aet as close as
pos s,butthereisafence. e acti oné
« How should we move?

f(x)=0 3

K (x

We want to maximize I K

But we can only move parallel
to the fence, i.e. along

reK=rK+ rf *P%

with |, , O.

AN
N Fence f

ide adanted from Mario Frit B. Leibe

RWTH//ACHE
Recap: Lagrange Multipliers
A Problem
« Now |l etds look at cdxytlaints o

« Example: There might be a hill from
which we can see bettuer.é

o Optimize maxL(x;,) = K(x)+,f(x)
X5,

K (x
A Two cases
« Solution lies on boundary
Y f(x) =0forsome , >0
« Solution lies inside f(x) >0
Y Constraint inactive: , =
o In both cases
Y ,f(x)=0

Fence f 23
B. Leibe
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Recap: Lagrange Multipliers SVMd Lagrangian Formulation

A Problem
« Now |l etds |l ook at cdfxytlaints o

Example: There might be a hill from
which we can see betteré

A Find hyperplane minimizing kwk?der the constraints
th(W'x,+bj 1, 0 8n

A Lagrangian formulation

o Optimi )= + 5
Optimize nxwax LOG.) = KOO+, () o s Introduce positive Lagrange multipliers: a,, 0 8n
f(x)= 0 %9 Karush-Kuhn-Tucker (KKT) S } iy N
= conditions; , , O = « Minimize Lagima imrgnlo%n (o .
£ £ 1
3 A Two cases f(x), 0 £ L(w;ba) = = kwk? an th(W'x,+bj 1
" s Solution lies on boundary f(x) = 0 & 2 n=1
E’ Y f(x) = 0Oforsome , >0 E’ . le.,find w, b and a such that
] o« Solution lies inside f(x) >0 S X X
B Y Constraint inactive: , = 0 3 @ @
2 onstraint inactive: | = 2 ~—_=0) anth= 0 ~—=0) |w= antnXn
§ o In both cases N f% @ n=1 @v n=1
= Y . f(x)=0 N Fence f o = 25
B. Leibe B. Leibe
RWTH CHE RWTH CHE
SVMdLagrangian Formulation SVM@ Solution (Part 1)
A Lagrangian primal form A Solution for the hyperplane
1 2 X © - a « Computed as a linear combination of the training examples
Lp = §Mki a, th(w'xp+bij 1 X
n=1 w = anthXn
1 n=1
=~ kwk? ftay(Xn)i 1
_ 2 ! N lan ny(n) i 19 . « Because of the KKT conditions, the following must also hold
3 3
£ . . . £ ! T LAY KKT:
= A The solution of L, needs to fulfill the KKT conditions E a th(W'xp+hj1=0 f(x)=0
:: s Necessary and sufficient conditions r/:J
S a 0 KKT: 0 S s This implies that &, > O only for training data points for which
= n . c 1 T w
= £ + . —
8 tay(xn)i 1, O f(x) . 0 g th(Ww'xn+Bil=0
E an ftnY(Xn) i 1g =0 f(x) = 0 E Y Only some of the data points actually influence the decision
S 2 El boundary!
= 2 = 27
B. Leibe ide adaoted from Bernt Schiele B. Leibe
RWTH ACHET RWTH ACHET

SVMa3 Support Vectors SVMa Solution (Part 2)

A Solution for the hyperplane
s To define the decision boundary, we still need to know b.
« Observation: any support vector X, satisfies

A The training points for which a,>0ar e ¢ aslippetd
vectors 6 .

A Graphical interpretation:

KKT:
o The support vectors are the . * t =t X tox'x,+b =1 [f(X), 0
points on the margin. N @ nY(Xn) = tq AmImXm Xn = >
- o They define the margin ° - m2s
9 and thus the hyperplane. £ ..
E . E s Using tﬁ = 1 we can derive: b=t, amtm Xan
s . s
o Y Robustness 20 2l m2s
2 points! S * = « In practice, it is more robust to average over all support vectors:
z g P .
5] b ]
E Origin . - S _ 1 X . X T
2 @\ / 2 b= N— thi amthan
{:.a‘ o Margin 'Eé S h2s m2S
= s

28
Jmage source: C. Birges 100f

B. Leibe

B. Leibe

ide adapted from Bernt Schiele
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SVM@ Discussion (Part 1)

A Linear SVM

Linear classifier

Approximative implementation of the SRM principle.

In case of separable data, the SVM produces an empirical risk of
zero with minimal value of the VC confidence

(i.e. a classifier minimizing the upper bound on the actual risk).

« SVMs thus have a oguaranteedo6 g
« Formulation as convex optimization problem.
Y Globally optimal solution!
A Primal form formulation
s+ Solution to quadratic prog. problem in M variables is in O(M3).
s+ Here: D variables Y O(D3)
o Problem: scaling with high -di m. data (ocurse
30
ide adapted from Bernt Schiele B. Leibe
RWTH CHE
SVM@d Dual Formulation
1 2 T X
Lp=§kwk i antaw' X, + an
n=1 n=1
X a
« Using the constraint W = anth Xnwe obtain ZP=-9
n=1 @V
1N X Lo
Lp= 5 kwki antn  AmtmXpXn+  an
n=1 m=1 n=1
1, N . X
= ikwk i anamtntm(XmXn) +  an
n=1m=1 n=1

ide adaoted from Bemt Schiele B. Leibe

RWTH ACHEN
SVM& Dual Formulation
A Maximize
N LR N
Le@=  ai 5 anamtntm (X Xn)
n=1 n=1m=1

under the conditions

a, , 0 8n

X

anth, = 0
n=1
o« The hyperplane is given by the Ng support vectors:

Ns

W = antnXn

n=1

ide adanted from Bernt Schiele B. Leibe
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RWTHACIEN
SVM& Dual Formulation

A Improving the scaling behavior: rewrite L, in a dual form
X © a
a, ta(W'xp+b)j 1

Lp= %kwkzi
1

]
I

P 70y
antaW'Xq i b th+  a
1 <1 n=1

]
n

%

anty = Ove obtain
=1

s Using the constraint

E

M
antaW Xy + &y

Lp= Ekwkzi
2
n=1 n=1

ide adapted from Bemt Schiele B. Leibe

SVM@ Dual Formulation

@namtntm(XTXn) + @
n=1m=1 n=1

L=%kwk2i

1 1
« Applying 5 kwk?= zWTWnd againusing W =

anamtntm (X}, Xn)

n=1m=1

« Inserting this, we get the  Wolfe dual
[

ani 5

)

n=1 n=1m=1

Lq(a) = anamtntm(XIan)

ide adanted from Bemnt Schiele B. Leibe

SVMa Discussion (Part 2)

A Dual form formulation
s In going to the dual, we now have a problem in
this

N variables ( a,).

a |l sndt worse??? We penalize
AHoweveré
1. SVMs have sparse solutions: &, , 0 only for support vectors!
Y This makes it possible to construct efficient algorithms
3 e.g. Sequential Minimal Optimization (SMO)
d Effective runtime between ~ O(N) and O(N?).

2. We have avoided the dependency on the dimensionality.

Y This makes it possible to work with infinite _ -dimensional feature
spaces by using suitable basis functions A(X).

YWedl |l see

that in a few minutes

35

B. Leibe
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RWTHAACHE

So Far é
Aoni y looked at
o Current problem formulation has no
solution if the data are not linearly
separable!
s Need to introduce some tolerance to
outlier data points.

I i negrel y ($eagp

B. Leibe

SVM0d Soft-Margin Classification

A Slack variables

o One slack variable », , O for each training data point.

A Interpretation
u », = 0 for points that are on the correct side of the margin.
o » = [ty T y(X,)| for all other points (linear penalty).

Point on decision
boundary: », =1

Misclassified point:
»>1

s We do not have to set the slack variables ourselves!
Y They are jointly optimized together with w

o
B. Leibe

RWTH/ACHET
SVMd&New Primal Formulation
A New SVM Primal: Optimize
1 ) X X X
LP: Zka +C M i an (thy(xn) i 1+ )i T
n=1 n=1 n=1
~—
Constraint Constraint
taY(Xn), 1i », 0
A KKT conditions
KKT:
an, O 'h, O 0
tay(Xn)i 1+ , O mo, 0 | fx), 0
an (tay(Xn)i 1+m) = 0 ym = 0 |, f(x) =0

B. Leibe
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SVMd&Non-Separable Data

A Non-separable data
o l.e. the following inequalities cannot be satisfied for all data

points
wWix,+b, +1 for t, = +1
wix,+b- j1 for thn=j1
o Instead use
wixy+b, +1j » for t,=+1
Wixp+be jl+» for t,=j1
wi t blackovariables », , O 8n
B. Leibe 39
RWTH CHE
SVMdNon-Separable Data
A Separable data 1 ) Trade -off
o Minimize i kwk parameter!

A Non-separable data 1
o Minimize

41

RWTH/ACHET
SVMd&New Dual Formulation
A New SVM Dual: Maximize
[ T
La@=  ani 5 @ 8mtntm (XmXn)
n=1 n=1m=1
under the conditions This s all
IS IS al
0-a- C that changed!
X
ath, = 0
n=1

A Thisis again a quadratic programming problem

YSolve as beforeé (more on that

de adapted from Bernt Schiele B. Leibe

43
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SVMd New Solution

A Solution for the hyperplane
« Computed as a linear combination of the training examples

X
w = anthXn
n=1
« Again sparse solution: a, = O for points outside the margin.
Y The slack points with », > 0 are now also support vectors!

« Compute bby averaging over all N, points with 0< a, < C:
1 N X )

N thi Am tmXmXn
M nam m2M

b=

B. Leibe

So Far é

Only |l ooked at |

Current problem formulation has no
solution if the data are not linearly
separable!
Need to introduce some tolerance to
outlier data points.

Y Slack variables

RWTHACHEN

AOnIy |l ooked at | inear deci s
« This is not sufficient for many applications.
s Want to generalize the ideas to non -linear “ y:
boundaries.
B. Leibe

Image source: B

RWTH ACHET
Another Example
A Non-separable by a hyperplane in 2D
° °
L BN °
L ]
£ .. L]
° o® o
.. o® : °o0 X
o LY )
° %,
® o
[ ]
o ¢ ¢ o
° o
e o° o
® L]
L ] 49
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RWTH/ACHEN

Interpretation of Support Vectors

A Those are the hard examples!
« We can visualize them, e.g. for face detection
NON-FACES
.
: CRL]
FACES o

45,

B. Leibe Image source' EQsuna E Girosj, 199

Nonlinear SVM

A Linear SVMs
« Datasets that are linearly separable with some noise work well:

2o

ol x
« But what are we going to do if the dataset is just too hard?
0 X
« How abouté mappi ng-dichensional space:a hi
L]
L]
) 8
ide credit Moone B. Leibe

Another Example

A Separable by a surface in 3D
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Nonlinear SVM o6 Feature Spaces Nonlinear SVM

A General idea
« Nonlinear transformation A of the data points X ,:

x2RP A:RP! H

A General idea: The original input space can be mapped to
some higher -dimensional feature space where the
training set is separable:

& % .
* . o « Hyperplane in higher -dim. space H (linear classifier in H)
1
e e o . T A
= e - wiAx)+b=10
2 3
= . £
E . ° £ g ’ [ o
= e = Y Nonlinear classifier in  RP.
%] o lo ° (%)
E ° o E
3 ° Q
£ £
= =
8 8
= =
51 52
ide credit Moone: ide credit: Bernt Schiele B. Leibe

RWTHACHEN

What Could This Look Like? Problem with High -dim. Basis Functions

A Problem
« In order to apply the SVM, we need to evaluate the function

y(x) = wTA(x) + b

A Example:
s+ Mapping to polynomial space, X,y 2 R%

- e gg s+ Using the hyperplane, which is itself defined as
1
A(x) = 4 5 _ "
A(x) 2x21x2 02 W = antn A(Xn)
X5 — _
1 n=1
_ 5 0.5
— ~05 . . . - . .
'6'5“-'-'1-4--/-1 Y What happens if we try this for a million  -dimensional

feature space A(x)?

« Motivation: Easier to separate data in higher -dimensional space. Ohoh é

o Butwait i snét there a big probl em?
8 How should we evaluate the decision function?

Machine Learning, Su mme r
Machine Learning, Su mme r

53

Image source: C, Burges, 1994

B. Leibe B. Leibe

Solution: The Kernel Trick Back to Our Previous

A Important observation A 2nd degree polynomial kernel:

« A(X) only appears in the form of dot products ~ A(x)TA(y): - ox2 U y2 < oo
_ T /i < T4 4 P 1 5 p 21 5 osf

y(x) = w AX)+b A(x)" Aly) = 2X21X2 ¢ 2)/21)/2 o

X2 Y2 K=

antnA(xn) TA(X) + b
n=1
Trick: Define a so -called kernel function k(x,y) = A(x)TA(y).

_ 22 2,2
= XTY1 + X1X2y1Y2 + X5Y5

= (xTy)? =1 k(x;y)

o Whenever we evaluate the kernel function k(x,y) = (xTy)2 we
implicitly compute the dot product in the higher -dimensional
feature space.

Now, in place of the dot product, use the kernel instead:

X
y(x) = antnK(Xn;X) + b
n=1
The kernel function implicitly maps the data to the higher -
dimensional space (without having to compute ~ A(X) explicitly)!

o o
= £
£ £
S =]
%) 0
=3 =3
5 5
< £
< =]
@ 51
4 a
o o
5 5
= =
S S
s <]
= =

56
lmage source: C. Burges 190]

B. Leibe B. Leibe
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SVMs with Kernels Which Functions are Valid Kernels?

-
AUsingkerneIs AMercerds theorem (modernze

o Applying the kernel trick is easy. Just replace every dot product o Every positive definite symmetric function is a kernel. )
by a kernel functioné
T 1 : - - . .
xty book(xy) M A Positive definite symmetric functions correspond to a

« éand wedre done. o positive definite symmetric Gram matrix:

s Il nstead of the raw input space,
° dimepsional (potgntially infinite dimensional!) space, where the ° KXy | KXo | k(g,xg) & KXy, %)
€ data is more easily separable. E
S R ) S Koox) | kOGx) | K(xX) KO X)
o 0Sounds | iKk n %
£ . i L £ ” ” . ” ”
=| A wait 3does this always work? 50 £ c c ¢ c c
% s The kernel needs to define an implicit mapping & E k(xnXy) | K(XXp) | K(Xq,X3) é k(% %)
£ to a higher -dimensional feature space A(X). £
é + When is this the case? é (positive definite = all eigenvalues are >0 )

58
B. Leibe ide credit: Moone: B. Leibe

RWTH/ACHEN RWTH/ACHEN
Recap: Kernels Ful fil Example: Bag of Visual Words Representation
A Polynomial kernel A General framework in visual recognition
k(x;y) = (XTy + 1)9 « Create a codebook (vocabulary) of prototypical image features
« Represent images as histograms over codebook activations
A Radial Basis Function kernel « Compare two images by any histogram]kernil,’.(.el.g. A2 kernel
e ) PRE | (hi — 1)
oY = C(xiy) Eye(h i) = oxp [ — i
. K(X;y) = exp i 78 e.g. Gaussian _ * . 5 ZJ: by +
3 3
£ £
= A Hyperbolic tangent kernel s
12 2
H k(x; y)M e.g. Sigmoid g
& § { { 4
: Actually, this was wrong in :
£ the original SVM pas)er.“ £
S (and many, many moreée¢ 5
= 59 = N w0
ide credit: Bernt Schiele B. Leibe ide adapted from Christooh | ampert B. Leibe
RWTH/ACHEN RWTH/ACHEN

Nonlinear SVM & Dual Formulation VC Dimension for Polynomial Kernel

A SVM Dual: Maximize A Polynomial kernel of degree p:

N N N
1 ~ k(x;y) = (xTy)P
Li(a)= )» a,—3 anmbntmk(Xm, Xy '
@7 L g 2 2 ettt o
« Dimensionality of H: TP
under the conditions P
0- a,- C
N « Example: D = 16£ 16= 256
ath, = 0 p=4
n=1

dim(H) = 183:181:376
A Classify new data points using
J o The hyperplane in H then has VC-dimension

N
y(x) = Y autuh(x,.x)+b dim(H) + 1

n=1

o o
= £
£ £
S =]
%) 0
=3 =3
5 5
< £
< =]
@ 51
4 a
o o
5 5
= =
S S
s <]
= =

B. Leibe B. Leibe
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VC Dimension for Gaussian RBF Kernel

A Radial Basis Function:

‘e (x| y)2 -
k(x;y) = exp | ———
(x;y) p i 2%
« In this case, H is infinite dimensional!
_1+X+X2+...+Xn+...
exp(x) = Tttt

Since only the kernel function is used by the SVM, this is no
problem.

The hyperplane in H then has VC-dimension
dimH)+1=1

B. Leibe

RWTHACTER

Example: RBF Kernels

A Decision boundary on toy problem

i
A
1
RBF Kernel width ( 3)
65
B. Leibe ) B - mola. 200:

Theoretical Justification for Maximum Margins

A Vapnik has proven the following:

s The class of optimal linear separators has VC dimension h
bounded from above as ., _, ~

. eeD°g U

he minj éﬁgmﬂlﬁl

ief u vy
where { is the margin, D is the diameter of the smallest sphere
that can enclose all of the training examples, and m ois the

dimensionality.

A Intuitively, this implies that regardless of dimensionality
my we can minimize the VC dimension by maximizing the
margin t .

A Thus, complexity of the classifier is kept small
regardless of dimensionality.

ide credit Moone B Leibe
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RWTHTT ;
VC Dimension for Gaussian RBF Kernel

A Intuitively

o If we make the radius of the RBF kernel sufficiently small, then
each data point can be associated with its own kernel.

« However, this also means that we can get finite VC
we set a lower limit to the RBF radius.

-dimension if

B. Leibe
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Buté buté but é
ADonst we risk
dimensional feature spaces?
o No matter what the basis functions are, there are really only up
to N parameters: a,, @, € ay and most of them are usually set
to zero by the maximum margin criterion.

« The data effectively lives in alow -dimensional subspace of H.

overfitting w

A What about the VC dimension? | thought low VC -dim was
good (in the sense of the risk bound)?
« Yes, but the maximum margin cl a

Reason (Vapnik): by maximizing the margin, we can reduce the
VGC-dimension.

Empirically, SVMs have very good generalization performance.

B. Leibe

SVM Demo

Changs |[Fin]| car | Save | Load [1T-1-1 -4 100

Applet from libsvm

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/ )
B. Leibe
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Summary: SVMs

A Properties

Empirically, SVMs work very, very well.

SVMs are currently among the best performers for a number of
classification tasks ranging from text to genomic data.

SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

SVM techniques have been applied to a variety of other tasks
8 e.g. SV Regression, One-c | ass SVMs, é

The kernel trick has been used for a wide variety of
applications. It can be applied wherever dot products are in use

de. g. Kernel PCA, kernel FLD, é
& Good overview, software, and tutorials available on
http://www.kernel _-machines.org/
69
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Topics of This Lecture
A Applications
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Example Application: Text Classification
A Results:
SVM (poly) SVM (rbf)
degree d = width v =
Bayes|Rocchio|C4.5]k-NN|| 1 | 2 [ 3 | 4| 5 Jos]os]|10]12
[earn 95.9 | 96.1 [96.1]97.3 [[98.2]98.4[08.5[98.4[98.3][98.5]98.5[95.4 [98.3
acq 91.5 | 92.1 [85.3]92.0 [92.6]94.6]95.2[95.2|95.3](95.0/95.3]95.3|05.4
money-fx || 62.9 | 67.6 [69.4]78.2 [[66.9[72.5]75.4|74.9(76.2][74.0|75.1|76.3| 75.9
grain 725 | 79.5 [89.1]82.2[91.3[93.1[92.4/91.3|89.9(93.1[91.9[91.9[90.6
crude 81.0 | 81.5 [75.5)85.7 |[86.0[87.3[85.6|88.9]87.8][88.9[89.0/88.0|88.2
trade 50.0 | 77.4 [59.2[77.4 [|60.2|75.5|76.6|77.3|77.1|| 76.978.0|77.8| 76.8
interest || 68.0 | 72.5 [40.1]74.0 [|69.8[63.3[67.573.1[76.2|[74.4[75.0/76.2| 76.1
ship 78.7 | 83.1 |80.9]79.2 ||82.085.4]86.0|86.586.0 [|85.4|86.5| 87,6 | 87.1
wheat 60.6 | 79.4 [85.5]76.6 [83.1]84.5[85.2[85.9|83.5|[85.2[85.9/85.985.9
corn 47.3 | 622 |B7.7|77.0||86.086.585.3|85.783.0 |85.1|85.7(85.7 |84 5

microavg.|| 72.0 | 79.9 |79.4|82.3

84.2(85.1[85.9(86.285.9 || 86.4 86.5(86.3 | 86.2
combined: 86.0 combined: 86.4

B. Leibe
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Summary: SVMs

A Limitations
o How to select the right kernel?
0Still something of a black
s How to select the kernel parameters?
& (Massive) cross-validation.
& Usually, several parameters are optimized together in a grid search.
« Solving the quadratic programming problem
& Standard QP solvers do not perform too well on SVM task.
& Dedicated methods have been developed for this, e.g. SMO.
s Speed of evaluation
& Evaluating y(x) scales linearly in the number of SVs.

arté

8 Too expensive if we have a large number of support vectors.
Y There are techniques to reduce the effective SV set.
« Training for very large datasets (millions of data points)
& Stochastic gradient descent and other approximations can be used

B. Leibe
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Example Application: Text Classification

A Problem:
« Classify a document in a number of categories

Q<
A Representation:

« 0OBaof-wor dsé approach

s Histogram of word counts (on learned dictionary)
& Very high -dimensional feature space (~10.000 dimensions)
3 Few irrelevant features

A This was one of the first applications of SVMs
« T.Joachims (1997)

B. Leibe
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Example Application: Text Classification

A This is also how you could implement a simple spam

filteré
Dicticinary
-~

C
Incoming email Word activations i I

=

Mailbox

B. Leibe
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Example Application: OCR Historical Importance

A USPS benchmark

o 2.5% error: human performance

A Handwritten digit
recognition
s US Postal Service Database
« Standard benchmark task
for many learning algorithms

A Different learning algorithms
s 16.2% error: Decision tree (C4.5)
s 5.9% error: (best) 2 -layer Neural Network

1LELIALA21743412000 LY s 5.1% error: LeNet 1 8 (massively hand -tuned) 5 -layer network
FAELEERECEINCEALNE NN

1598232120283 ,ML‘{.G.JQJ.
284

A Different SVMs
o 4.0% error: Polynomial kernel (p=3, 274 support vectors)
o 4.1% error: Gaussian kernel ( ¥#0.3, 291 support vectors)

Z?]é#;,.&i&z&siéik?}.i 38
%ﬁlQﬁéﬂéﬁf:ZiﬁDQLéixQL
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Example Application: OCR Example Application: Object Detection
A Results A Sliding-window approach :;f"'me
abley
« Almost no overfitting with higher  -degree kernels.
degree of || dimensionality of | support | raw
polynornial feature space vectors | error — | Obi./non -obj.
1 256 282 8.9 Classifier
o 2 A2 33000 227 4.7 °
E 3 =~ 1 x 109 274 4.0 E
2 4 1% 10° 321 42 B
S 5 = 1x 102 374 4.3 E3 i )
g 6 a1 x 10 377 15 £ A E.g. histogram representation (HOG)
3 7 w1 % 1016 499 4.5 8 » Map each grid cell in the input window to a
@ ] histogram of gradient orientations.
§ 5 « Train a linear SVM using training set of
= . = pedestrian vs. non -pedestrian windows.
B. Leibe [Dalal & Triggs, CVPR 2004
RWTH ACHET RWTH ACHET

Example Application: Pedestrian Detection Many Other Applications

A Lots of other applications in all fields of technology
s OCR

Text classification

Computer vision

High-energy physics

Monitoring of household appliances

Protein secondary structure prediction

s Design on decision feedback equalizers (DFE) in telephony

(Detailed references in  Schoelkopf & Smola, 2002 , pp. 221)
N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection _, CVPR 2005
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