Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields

Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.

- Linear discriminant functions

 \[y(x) = w^T x + w_0 \]

 - The error function penalizes predictions that are “too correct”.

 - The error function penalizes predictions that are “too correct”.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error

 \[E(w) = \sum_{i=1}^{n} (y(x_i; w) - t_i)^2 \]

 \[E_D(\hat{W}) = \frac{1}{2} \text{tr} \left\{ (X\hat{W} - T)(X\hat{W} - T)^T \right\} \]

 - Setting the derivative to zero yields

 \[\hat{W} = (X^T X)^{-1} X^T T \]

 We then obtain the discriminant function as

 \[y(x) = \hat{W}^T x + \hat{w}_0 = \frac{1}{2} X^T \hat{X} \]

 \[\Rightarrow \text{Exact, closed-form solution for the discriminant function} \]

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!

 - The error function penalizes predictions that are “too correct”.

Recap: Generalized Linear Models

- Generalized linear model

 \[y(x) = g(w^T x + w_0) \]

 - \(g(\cdot) \) is called an activation function and may be nonlinear.

 - The decision surfaces correspond to

 \[y(x) = \text{const.} \quad \Leftrightarrow \quad w^T x + w_0 = \text{const.} \]

 - If \(g \) is monotonic (which is typically the case), the resulting decision boundaries are still linear functions of \(x \).

- Advantages of the non-linearity

 - Can be used to bound the influence of outliers and “too correct” data points.

 - When using a sigmoid for \(g(\cdot) \), we can interpret \(y(x) \) as posterior probabilities.
Recap: Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

- Classical counterexample: XOR

\[
\begin{align*}
 \text{XOR: } & C_1 \land \neg C_2 \lor \neg C_1 \land C_2 \\
 \text{OR: } & C_1 \lor C_2 \\
 \text{AND: } & C_1 \land C_2
\end{align*}
\]

Generalization

- Even if the data is not linearly separable, a linear decision boundary may still be “optimal”.

 - Generalization
 - E.g. in the case of Normal distributed data (with equal covariance matrices)

- Choice of the right discriminant function is important and should be based on
 - Prior knowledge (of the general functional form)
 - Empirical comparison of alternative models
 - Linear discriminants are often used as benchmark.

Linear Separability

- Model

\[
y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) = y_k(x; w)
\]

 - \(K\) functions (outputs) \(y_k(x; w)\)

 - Learning in Neural Networks
 - Single-layer networks: \(\phi_j\) are fixed, only weights \(w\) are learned.
 - Multi-layer networks: both the \(w\) and the \(\phi_j\) are learned.

 - In the following, we will not go into details about neural networks in particular, but consider generalized linear discriminants in general...

Generalized Linear Discriminants

- Generalization
 - Transform vector \(x\) with \(M\) nonlinear basis functions \(\phi_j(x)\):

\[
y_k(x) = \sum_{j=1}^{M} w_{kj} \phi_j(x) + w_{k0}
\]

 - Purpose of \(\phi_j(x)\) : basis functions
 - Allow non-linear decision boundaries.
 - By choosing the right \(\phi_j\), every continuous function can (in principle) be approximated with arbitrary accuracy.

- Notation

\[
y_k(x) = \sum_{j=0}^{M} w_{kj} \phi_j(x) \quad \text{with } \phi_0(x) = 1
\]

Gradient Descent

- Learning the weights \(w\):
 - \(N\) training data points: \(X = \{x_1, \ldots, x_N\}\)
 - \(K\) outputs of decision functions: \(y_k(x_n; w)\)
 - Target vector for each data point: \(t = \{t_1, \ldots, t_K\}\)

 - Error function (least-squares error) of linear model

\[
E(w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(x_n; w) - t_{kn})^2
\]

\[
= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \right)^2
\]

- \(w(\tau)\) is the weight vector at \(\tau\)-th iteration

\[
\Delta w_{kj} = \frac{\partial E(w)}{\partial w_{kj}}
\]

\[
\eta: \text{Learning rate}
\]

\[
\begin{align*}
 w_{kj}^{(\tau+1)} &= w_{kj}^{(\tau)} - \eta \cdot \frac{\partial E(w)}{\partial w_{kj}} \\
 \eta: &\text{Learning rate}
\end{align*}
\]

- This simple scheme corresponds to a \(1^{\text{st}}\)-order Taylor expansion (There are more complex procedures available).
Gradient Descent - Basic Strategies

- "Batch learning"

 $$w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E(w)}{\partial w_{kj}} |_{w^{(r)}}$$

 η: Learning rate

- Compute the gradient based on all training data:

 $$\frac{\partial E(w)}{\partial w_{kj}}$$

Gradient Descent

- Error function

 $$E(w) = \sum_{n=1}^{N} E_n(w) = \frac{1}{2} \sum_{n=1}^{N} K \sum_{j=1}^{M} \left(\sum_{k=1}^{K} w_{kj} \phi_j(x_n) - t_{kn} \right)^2$$

 $$E_n(w) = \frac{1}{2} K \sum_{j=1}^{M} \left(\sum_{k=1}^{K} w_{kj} \phi_j(x_n) - t_{kn} \right)^2$$

 $$\frac{\partial E_n(w)}{\partial w_{kj}} = \sum_{j=1}^{M} w_{kj} \phi_j(x_n) - t_{kn} \phi_j(x_n) = (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$

Gradient Descent - Basic Strategies

- "Sequential updating"

 $$E(w) = \sum_{n=1}^{N} E_n(w)$$

 $$w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \frac{\partial E_n(w)}{\partial w_{kj}} |_{w^{(r)}}$$

 η: Learning rate

- Compute the gradient based on a single data point at a time:

 $$\frac{\partial E_n(w)}{\partial w_{kj}}$$

Gradient Descent

- Delta rule (=LMS rule)

 $$w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$

 where

 $$\delta_{kn} = y_k(x_n; w) - t_{kn}$$

 ⇒ Simply feed back the input data point, weighted by the classification error.

Gradient Descent

- Cases with differentiable, non-linear activation function

 $$y_k(x) = g(a_k) = g \left(\sum_{j=0}^{M} w_{kj} \phi_j(x_n) \right)$$

- Gradient descent

 $$\frac{\partial E_n(w)}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn}) \phi_j(x_n)$$

 $$w_{kj}^{(r+1)} = w_{kj}^{(r)} - \eta \delta_{kn} \phi_j(x_n)$$

 $$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(x_n; w) - t_{kn})$$

Summary: Generalized Linear Discriminants

- Properties

 - General class of decision functions.
 - Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
 - Better 2nd order gradient descent approaches available (e.g. Newton-Raphson).

- Limitations / Caveats

 - Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_j often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.
Fisher's Linear Discriminant Analysis (FLD)

- **Better idea:** Find a projection that maximizes the ratio of the between-class variance to the within-class variance:

 \[J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} \]

 - Usually, this is written as:

 \[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

 - where:

 \[S_B = (m_2 - m_1)(m_2 - m_1)^T \]

 \[S_W = \sum_{k=1}^{2} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T \]

Classification as Dimensionality Reduction

- **Classification as dimensionality reduction**

 - We can interpret the linear classification model as a projection onto a lower-dimensional space.

 - E.g., take the \(d\)-dimensional input vector \(x\) and project it down to one dimension by applying the function:

 \[y = w^T x \]

 - If we now place a threshold at \(y \geq -w_0\), we obtain our standard two-class linear classifier.

 - The classifier will have a lower error the better this projection separates the two classes.

 \[\Rightarrow \text{New interpretation of the learning problem} \]

 - Try to find the projection vector \(w\) that maximizes the class separation.

Examples of good and bad separation:

- **Two questions**

 - How to measure class separation?

 - How to find the best projection (with maximal class separation)?
What does it mean to apply a linear classifier?

- **What does it mean to apply a linear classifier?**

 \[y(x) = w^T x \]

 - **Weight vector**
 - **Input vector**

- **Classifier interpretation**
 - The weight vector has the same dimensionality as \(x \).
 - Positive contributions where \(\text{sign}(w_i) = \text{sign}(w_j) \).
 - The weight vector identifies which input dimensions are important for positive or negative classification (large \(|w_i| \)) and which ones are irrelevant (near-zero \(w_i \)).
 - If the inputs \(x \) are normalized, we can interpret \(w \) as a "template" vector that the classifier tries to match.

\[w^T x = |w||x| \cos \theta \]

Multiple Discriminant Analysis

- **Generalization to \(K \) classes**

\[
J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}
\]

- where

\[
W = [w_1, \ldots, w_K] \quad m = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{K} \sum_{k=1}^{K} N_k m_k
\]

\[
S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T \quad S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T
\]

Maximizing \(J(W) \)

- "Rayleigh quotient" \(\Rightarrow \) Generalized eigenvalue problem

\[
J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}
\]

- The columns of the optimal \(W \) are the eigenvectors corresponding to the largest eigenvalues of

\[
S_B W = \lambda_i S_W W_i
\]

- Defining \(V = S_B^{-1} W \), we get

\[
S_B S_W^{-1} S_B^{-1} V = \lambda V
\]

which is a regular eigenvalue problem.

\(\Rightarrow \) Solve to get eigenvectors of \(V \), then from that of \(W \).

- For the \(K \)-class case we obtain (at most) \(K-1 \) projections,
 - (i.e. eigenvectors corresponding to non-zero eigenvalues.)

What Does It Mean?

- **Multiple Discriminant Analysis**

 - Generalization to \(K \) classes

 \[J(W) = \frac{|W^T S_B W|}{|W^T S_W W|} \]

 - where

 \[
 W = [w_1, \ldots, w_K] \quad m = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{1}{K} \sum_{k=1}^{K} N_k m_k
 \]

 \[
 S_B = \sum_{k=1}^{K} N_k (m_k - m)(m_k - m)^T \quad S_W = \sum_{k=1}^{K} \sum_{n \in C_k} (x_n - m_k)(x_n - m_k)^T
 \]

 \[\begin{align*}
 J(W) &= \frac{|W^T S_B W|}{|W^T S_W W|} \\
 &= \frac{\sum_{i=1}^{K} w_i^T S_B w_i}{\sum_{i=1}^{K} w_i^T S_W w_i}
 \end{align*} \]

Summary: Fisher’s Linear Discriminant

- **Properties**
 - Simple method for dimensionality reduction, preserves class discriminability.
 - Can use parametric methods in reduced-dim. space that might not be feasible in original higher-dim. space.
 - Widely used in practical applications.

- **Restrictions / Caveats**
 - Not possible to get more than \(K-1 \) projections.
 - FLD reduces the computation to class means and covariances.

 \(\Rightarrow \) Implicit assumption that class distributions are unimodal and well-approximated by a Gaussian/hyperellipsoid.
Fisher’s linear discriminant (FLD) and assume we represent $w_p p_p$ classification as dimensionality reduction. Applications together with the class priors, this gives

$$p(C_1 | x) = \sigma(a) = \frac{1}{1 + \exp(-a)}$$

logistic sigmoid function

We can obtain the familiar probabilistic model by setting $a = \ln \frac{p(x | C_1)p(C_1)}{p(x | C_2)p(C_2)}$

Or we can use generalized linear discriminant models $a = w^T x$

or $a = w^T \phi(x)$

This model is called logistic regression.

Probabilistic Discriminative Models

In the following, we will consider models of the form

$$p(C_1 | \phi) = \tilde{y}(\phi) = \sigma(w^T \phi)$$

with

$$p(C_2 | \phi) = 1 - p(C_1 | \phi)$$

This model is called logistic regression.

Why should we do this? What advantage does such a model have compared to modeling the probabilities?

$$p(C_1 | \phi) = \frac{p(\phi | C_1)p(C_1)}{p(\phi | C_1)p(C_1) + p(\phi | C_2)p(C_2)}$$

Any ideas?

Let’s look at the number of parameters…

- Assume we have an M-dimensional feature space ϕ.
- And assume we represent $p(\phi | C_1)$ and $p(\phi | C_2)$ by Gaussians.
- How many parameters do we need?
 - For the means: $2M$
 - For the covariances: $M(M+1)/2$
 - Together with the class priors, this gives $M(M+5)/2 + 1$ parameters!
- How many parameters do we need for logistic regression?
 - $p(C_1 | \phi) = \tilde{y}(\phi) = \sigma(w^T \phi)$
 - Just the values of $w \Rightarrow M$ parameters.

\Rightarrow For large M, logistic regression has clear advantages!

Logistic Regression

Let’s consider a data set $\{ \phi_n, t_n \}$ with $n = 1, \ldots, N$, where $\phi_n = \phi(x_n)$ and $t_n \in \{0,1\}$, $t = (t_1, \ldots, t_N)^T$.

With $y_n = p(C_1 | \phi_n)$, we can write the likelihood as

$$p(t | w) = \prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1-t_n}$$

Define the error function as the negative log-likelihood

$$E(w) = -\ln p(t | w)$$

$$= -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln (1 - y_n) \}$$

This is the so-called cross-entropy error function.
Gradient of the Error Function

- **Error function**
 \[E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\} \]

- **Gradient**
 \[\nabla E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \frac{\partial}{\partial \mathbf{w}} \ln y_n + (1 - t_n) \frac{\partial}{\partial \mathbf{w}} \ln(1 - y_n) \right\} \]
 \[= -\sum_{n=1}^{N} \left\{ t_n \frac{n - y_n}{y_n} \phi_n - (1 - t_n) \frac{y_n}{1 - y_n} \phi_n \right\} \]
 \[= -\sum_{n=1}^{N} \left\{ (t_n - y_n) \phi_n - y_n + t_n \phi_n \right\} \]
 \[= \sum_{n=1}^{N} (y_n - t_n) \phi_n \]

Gradient of the Error Function

- **Gradient for logistic regression**
 \[\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n \]

- **Does this look familiar to you?**
- **This is the same result as for the Delta (=LMS) rule**
 \[w^{(2+)} = w^{(2)} - \eta(y_k(\mathbf{x}_n; \mathbf{w}) - t_k) \phi_j(\mathbf{x}_n) \]
- **We can use this to derive a sequential estimation algorithm.**
 However, this will be quite slow...

A More Efficient Iterative Method...

- **Second-order Newton-Raphson gradient descent scheme**
 \[\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} - \mathbf{H}^{-1} \nabla E(\mathbf{w}) \]
 where \(\mathbf{H} = \nabla^2 E(\mathbf{w}) \) is the Hessian matrix, i.e. the matrix of second derivatives.

- **Properties**
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.

Newton-Raphson for Least-Squares Estimation

- Let’s first apply Newton-Raphson to the least-squares error function:
 \[E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi_n - t_n)^2 \]
 \[\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^T \phi_n - t_n) \phi_n = \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{t} \]
 \[\mathbf{H} = \nabla^2 E(\mathbf{w}) = \sum_{n=1}^{N} \phi_n \phi_n^T = \Phi^T \Phi \quad \text{where} \quad \Phi = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_N^T \end{bmatrix} \]
- **Resulting update scheme:**
 \[\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} - (\Phi^T \Phi)^{-1} \Phi^T (\mathbf{w}^{(r)} - \Phi^T \mathbf{t}) \]
 \[= (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t} \quad \text{Closed-form solution!} \]

Newton-Raphson for Logistic Regression

- Now, let’s try Newton-Raphson on the cross-entropy error function:
 \[E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \right\} \]
 \[\frac{\partial}{\partial \mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \Phi^T \mathbf{y} - \Phi^T \mathbf{t} \]
 \[\mathbf{H} = \nabla^2 E(\mathbf{w}) = \sum_{n=1}^{N} y_n(1 - y_n) \phi_n \phi_n^T = \Phi^T \mathbf{R} \Phi \]
 where \(\mathbf{R} \) is an \(N \times N \) diagonal matrix with \(R_{nn} = y_n(1 - y_n) \).

 ⇒ The Hessian is no longer constant, but depends on \(\mathbf{w} \) through the weighting matrix \(\mathbf{R} \).

Iteratively Reweighted Least Squares

- **Update equations**
 \[\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} - (\Phi^T \mathbf{R} \Phi)^{-1} \Phi^T (\mathbf{y} - \mathbf{t}) \]
 \[= (\Phi^T \mathbf{R} \Phi)^{-1} \left\{ \Phi^T \mathbf{R} \Phi \mathbf{w}^{(r)} - \Phi^T (\mathbf{y} - \mathbf{t}) \right\} \]
 \[= (\Phi^T \mathbf{R} \Phi)^{-1} \Phi^T \mathbf{R} \mathbf{z} \]
 \[\text{with} \quad \mathbf{z} = \Phi \mathbf{w}^{(r)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t}) \]

- **Again very similar form (normal equations)**
 - But now with non-constant weighting matrix \(\mathbf{R} \) (depends on \(\mathbf{w} \)).
 - Need to apply normal equations iteratively.
 ⇒ **Iteratively Reweighted Least-Squares (IRLS)**
Summary: Logistic Regression

- **Properties**
 - Directly represent posterior distribution \(p(C_k | x_i) \)
 - Requires fewer parameters than modeling the likelihood + prior.
 - Very often used in statistics.
 - It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
 - Both online and batch optimizations exist
 - There is a multi-class version described in (Bishop Ch.4.3.4).

- **Caveat**
 - Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Fisher’s linear discriminant (FLD)
 - Classification as dimensionality reduction
 - Linear discriminant analysis
 - Multiple discriminant analysis
 - Applications

- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent
 - Iteratively Reweighted Least Squares

- Note on Error Functions

Note on Error Functions

- **Ideal misclassification error** function (black)
 - This is what we would like to approximate.
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - We cannot minimize it by gradient descent.

Comparing Error Functions (Loss Functions)

- **Cross-Entropy Error**
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

Overview: Error Functions

- **Ideal Misclassification Error**
 - This is what we would like to optimize.
 - But cannot compute gradients here.

- **Quadratic Error**
 - Easy to optimize, closed-form solutions exist.
 - But not robust to outliers.

- **Cross-Entropy Error**
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - But no closed-form solution, requires iterative estimation.

\(\Rightarrow \) Analysis tool to compare classification approaches
References and Further Reading

- More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop’s book (in particular Chapter 4.1 - 4.3).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006