Machine Learning - Lecture 3

Probability Density Estimation II

21.04.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele
Course Outline

• Fundamentals (2 weeks)
 ➢ Bayes Decision Theory
 ➢ Probability Density Estimation

• Discriminative Approaches (5 weeks)
 ➢ Linear Discriminant Functions
 ➢ Support Vector Machines
 ➢ Ensemble Methods & Boosting
 ➢ Randomized Trees, Forests & Ferns

• Generative Models (4 weeks)
 ➢ Bayesian Networks
 ➢ Markov Random Fields
Topics of This Lecture

• Recap: Bayes Decision Theory

• Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning

• Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff
Recap: Bayes Decision Theory

- Optimal decision rule
 - Decide for C_1 if
 \[p(C_1 | x) > p(C_2 | x) \]
 - This is equivalent to
 \[p(x | C_1) p(C_1) > p(x | C_2) p(C_2) \]
 - Which is again equivalent to (Likelihood-Ratio test)
 \[\frac{p(x | C_1)}{p(x | C_2)} > \frac{p(C_2)}{p(C_1)} \]

 Decision threshold θ

Slide credit: Bernt Schiele
Recap: Bayes Decision Theory

- Decision regions: R_1, R_2, R_3, \ldots
Recap: Classifying with Loss Functions

- We can formalize the intuition that different decisions have different weights by introducing a loss matrix L_{kj}

$$L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k.$$

- Example: cancer diagnosis

$$L_{\text{cancer diagnosis}} = \begin{pmatrix} \text{cancer} \\ \text{normal} \end{pmatrix} \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$$
Recap: Minimizing the Expected Loss

• Optimal solution is the one that minimizes the loss.
 ▶ But: loss function depends on the true class, which is unknown.

• Solution: Minimize the expected loss

 \[\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{R_j} L_{kj} p(x, C_k) \, dx \]

• This can be done by choosing the regions \(R_j \) such that

 \[\mathbb{E}[L] = \sum_{k} L_{kj} p(C_k | x) \]

\[\Rightarrow \text{Adapted decision rule:} \]

\[\frac{p(x | C_1)}{p(x | C_2)} > \frac{(L_{21} - L_{22}) p(C_2)}{(L_{12} - L_{11}) p(C_1)} \]

B. Leibe
Recap: Gaussian (or Normal) Distribution

- **One-dimensional case**
 - Mean μ
 - Variance σ^2

$$N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}$$

- **Multi-dimensional case**
 - Mean μ
 - Covariance Σ

$$N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

Image source: C.M. Bishop, 2006
Recap: Maximum Likelihood Approach

• Computation of the likelihood
 - Single data point: \(p(x_n|\theta) \)
 - Assumption: all data points \(X = \{x_1, \ldots, x_n\} \) are independent
 \[
 L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)
 \]
 - Log-likelihood
 \[
 E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)
 \]

• Estimation of the parameters \(\theta \) (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)
 \[\Rightarrow \text{Take the derivative and set it to zero.} \]
 \[
 \frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\partial}{\partial \theta} p(x_n|\theta) \frac{p(x_n|\theta)}{p(x_n|\theta)} = 0
 \]
Topics of This Lecture

• Recap: Bayes Decision Theory

• Parametric Methods
 ➢ Recap: Maximum Likelihood approach
 ➢ Bayesian Learning

• Non-Parametric Methods
 ➢ Histograms
 ➢ Kernel density estimation
 ➢ K-Nearest Neighbors
 ➢ k-NN for Classification
 ➢ Bias-Variance tradeoff
Recap: Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case
 \[N = 1, X = \{x_1\} \]

 \[\Rightarrow \text{Maximum-likelihood estimate:} \]
 \[\hat{\sigma} = 0! \]

 - We say ML *overfits to the observed data*.
 - We will still often use ML, but it is important to know about this effect.
Deeper Reason

• Maximum Likelihood is a **Frequentist** concept
 - In the **Frequentist view**, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.

• This is in contrast to the **Bayesian** interpretation
 - In the **Bayesian view**, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.

• Bayesians and Frequentists do not like each other too well...
Bayesian vs. Frequentist View

• To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

\[\text{Posterior} \propto \text{Likelihood} \times \text{Prior} \]

- This generally allows to get better uncertainty estimates for many situations.

• Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.
Bayesian Approach to Parameter Learning

- Conceptual shift
 - Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
 - In Bayesian learning, we consider θ to be a random variable.

- This allows us to use knowledge about the parameters θ
 - i.e., to use a prior for θ
 - Training data then converts this prior distribution on θ into a posterior probability density.

 - The prior thus encodes knowledge we have about the type of distribution we expect to see for θ.

Slide adapted from Bernt Schiele
Bayesian Learning Approach

- Bayesian view:
 - Consider the parameter vector θ as a random variable.
 - When estimating the parameters from a dataset X, we compute

$$p(x|X) = \int p(x, \theta|X)d\theta$$

$$p(x, \theta|X) = p(x|\theta, X)p(\theta|X)$$

Assumption: given θ, this doesn’t depend on X anymore

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

This is entirely determined by the parameter θ
(i.e., by the parametric form of the pdf).

Slide adapted from Bernt Schiele
Bayesian Learning Approach

\[p(x|X) = \int p(x|\theta)p(\theta|X)d\theta \]

\[p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \frac{p(\theta)}{p(X)}L(\theta) \]

\[p(X) = \int p(X|\theta)p(\theta)d\theta = \int L(\theta)p(\theta)d\theta \]

• Inserting this above, we obtain

\[p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{p(X)}d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta \]
Bayesian Learning Approach

Discussion

If we now plug in a (suitable) prior \(p(\theta) \), we can estimate \(p(x|X) \) from the data set \(X \).
Bayesian Density Estimation

- Discussion

\[p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta \]

- The probability \(p(\theta|X) \) makes the dependency of the estimate on the data explicit.

- If \(p(\theta|X) \) is very small everywhere, but is large for one \(\hat{\theta} \), then

\[p(x|X) \approx p(x|\hat{\theta}) \]

\[\Rightarrow \] In this case, the estimate is determined entirely by \(\hat{\theta} \).

\[\Rightarrow \] The more uncertain we are about \(\theta \), the more we average over all parameter values.

Slide credit: Bernt Schiele
Bayesian Density Estimation

• Problem
 - In the general case, the integration over θ is not possible (or only possible stochastically).

• Example where an analytical solution is possible
 - Normal distribution for the data, σ^2 assumed known and fixed.
 - Estimate the distribution of the mean:
 \[
 p(\mu|X) = \frac{p(X|\mu)p(\mu)}{p(X)}
 \]
 - Prior: We assume a Gaussian prior over μ,
 \[
 p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2).
 \]
Bayesian Learning Approach

- Sample mean: \(\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n \)

- Bayes estimate:
 \[
 \mu_N = \frac{\sigma^2 \mu_0 + N \sigma_0^2 \bar{x}}{\sigma^2 + N \sigma_0^2}
 \]
 \[
 \frac{1}{\sigma^2_N} = \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}
 \]

- Note:
<table>
<thead>
<tr>
<th>(N = 0)</th>
<th>(N \to \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_N)</td>
<td>(\mu_0)</td>
</tr>
<tr>
<td>(\sigma^2_N)</td>
<td>(\sigma_0^2)</td>
</tr>
</tbody>
</table>

Image source: C.M. Bishop, 2006
Summary: ML vs. Bayesian Learning

- **Maximum Likelihood**
 - Simple approach, often analytically possible.
 - Problem: estimation is biased, tends to overfit to the data.
 - \Rightarrow Often needs some correction or regularization.
 - But:
 - Approximation gets accurate for $N \to \infty$.

- **Bayesian Learning**
 - General approach, avoids the estimation bias through a prior.
 - Problems:
 - Need to choose a suitable prior (not always obvious).
 - Integral over θ often not analytically feasible anymore.
 - But:
 - Efficient stochastic sampling techniques available.

In this lecture, we’ll use both concepts wherever appropriate
Topics of This Lecture

- Recap: Bayes Decision Theory

- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning

- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff
Non-Parametric Methods

- Non-parametric representations
 - Often the functional form of the distribution is unknown

- Estimate probability density from data
 - Histograms
 - Kernel density estimation (Parzen window / Gaussian kernels)
 - k-Nearest-Neighbor

Slide credit: Bernt Schiele
Histograms

- Basic idea:
 - Partition the data space into distinct bins with widths \(\Delta_i \) and count the number of observations, \(n_i \), in each bin.

 \[
 p_i = \frac{n_i}{N \Delta_i}
 \]

 - Often, the same width is used for all bins, \(\Delta_i = \Delta \).
 - This can be done, in principle, for any dimensionality \(D \)...

...but the required number of bins grows exponentially with \(D \)!
Histograms

- The bin width Δ acts as a smoothing factor.

- Not smooth enough

- About OK

- Too smooth

Image source: C.M. Bishop, 2006
Summary: Histograms

• Properties
 - Very general. In the limit \(N \to \infty \), every probability density can be represented.
 - No need to store the data points once histogram is computed.
 - Rather brute-force

• Problems
 - High-dimensional feature spaces
 - \(D \)-dimensional space with \(M \) bins/dimension will require \(M^D \) bins!
 \(\Rightarrow \) Requires an exponentially growing number of data points
 \(\Rightarrow \) “Curse of dimensionality”
 - Discontinuities at bin edges
 - Bin size?
 - too large: too much smoothing
 - too small: too much noise
Statistically Better-Founded Approach

- Data point x comes from pdf $p(x)$
 - Probability that x falls into small region \mathcal{R}
 \[P = \int_{\mathcal{R}} p(y) dy \]

- If \mathcal{R} is sufficiently small, $p(x)$ is roughly constant
 - Let V be the volume of \mathcal{R}
 \[P = \int_{\mathcal{R}} p(y) dy \approx p(x)V \]

- If the number N of samples is sufficiently large, we can estimate P as
 \[P = \frac{K}{N} \quad \Rightarrow \quad p(x) \approx \frac{K}{NV} \]

Slide credit: Bernt Schiele
Statistically Better-Founded Approach

\[p(x) \approx \frac{K}{NV} \]

- Kernel Methods
- K-Nearest Neighbor

Kernel methods
- Example: Determine the number \(K \) of data points inside a fixed window...

Slide credit: Bernt Schiele
Kernel Methods

- Parzen Window
 - Hypercube of dimension D with edge length h:

 $$k(u) = \begin{cases}
 1, & |u_i| \leq \frac{1}{2}, \quad i = 1, \ldots, D \\
 0, & \text{else}
 \end{cases}$$

 “Kernel function”

 $$K = \sum_{n=1}^{N} k(\frac{x - x_n}{h})$$

 $$V = \int k(u) du = h^d$$

 - Probability density estimate:

 $$p(x) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\frac{x - x_n}{h})$$

 Slide credit: Bernt Schiele
Kernel Methods: Parzen Window

- Interpretations
 1. We place a kernel window k at location x and count how many data points fall inside it.
 2. We place a kernel window k around each data point x_n and sum up their influences at location x.
 \[\Rightarrow \text{Direct visualization of the density.} \]

- Still, we have artificial discontinuities at the cube boundaries...
 - We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian
Kernel Methods: Gaussian Kernel

- Gaussian kernel
 - Kernel function
 \[k(u) = \frac{1}{(2\pi h^2)^{1/2}} \exp \left\{ -\frac{u^2}{2h^2} \right\} \]

 \[K = \sum_{n=1}^{N} k(x - x_n) \]
 \[V = \int k(u) du = 1 \]

- Probability density estimate
 \[p(x) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi)^{D/2}h} \exp \left\{ -\frac{\|x - x_n\|^2}{2h^2} \right\} \]
Gauss Kernel: Examples

not smooth enough

about OK

too smooth

h acts as a smoother.

Image source: C.M. Bishop, 2006
Kernel Methods

• In general
 - Any kernel such that
 \[k(u) \geq 0, \quad \int k(u) \, du = 1 \]
 can be used. Then
 \[
 K = \sum_{n=1}^{N} k(x - x_n)
 \]
 And we get the probability density estimate
 \[
 p(x) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} k(x - x_n)
 \]

Slide adapted from Bernt Schiele
Statistically Better-Founded Approach

\[p(x) \approx \frac{K}{NV} \]

- **Kernel Methods**
 - fixed \(V \)
 - determine \(K \)

- **K-Nearest Neighbor**
 - fixed \(K \)
 - determine \(V \)

- **K-Nearest Neighbor**
 - Increase the volume \(V \) until the \(K \) next data points are found.
K-Nearest Neighbor

- Nearest-Neighbor density estimation
 - Fix K, estimate V from the data.
 - Consider a hypersphere centred on x and let it grow to a volume V^* that includes K of the given N data points.
 - Then
 \[p(x) \sim \frac{K}{NV^*}. \]

- Side note
 - Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
 - E.g. consider $K = 1$ and a sample exactly on a data point $x = x_j$.
k-Nearest Neighbor: Examples

- not smooth enough
- about OK
- too smooth

K acts as a smoother.

Image source: C.M. Bishop, 2006
Summary: Kernel and k-NN Density Estimation

- **Properties**
 - Very general. In the limit \(N \to \infty \), every probability density can be represented.
 - No computation involved in the training phase
 ⇒ Simply storage of the training set

- **Problems**
 - Requires storing and computing with the entire dataset.
 ⇒ Computational cost linear in the number of data points.
 ⇒ This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
 - Kernel size / \(K \) in K-NN?
 - Too large: too much smoothing
 - Too small: too much noise
K-Nearest Neighbor Classification

- Bayesian Classification

\[p(C_j \mid x) = \frac{p(x \mid C_j)p(C_j)}{p(x)} \]

- Here we have

\[
\begin{align*}
 p(x) &\approx \frac{K}{NV} \\
p(x \mid C_j) &\approx \frac{K_j}{N_jV} \\
p(C_j) &\approx \frac{N_j}{N}
\end{align*}
\]

\[
p(C_j \mid x) \approx \frac{K_j}{N_jV} \frac{N_j}{N} \frac{NV}{K} = \frac{K_j}{K}
\]

k-Nearest Neighbor classification
K-Nearest Neighbors for Classification

Image source: C.M. Bishop, 2006
K-Nearest Neighbors for Classification

- Results on an example data set

\[
K = 1 \\
K = 3 \\
K = 31
\]

- \(K\) acts as a smoothing parameter.

- Theoretical guarantee
 - For \(N \to \infty\), the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

B. Leibe

Image source: C.M. Bishop, 2006
Bias-Variance Tradeoff

- Probability density estimation
 - Histograms: bin size?
 - Δ too large: too smooth
 - Δ too small: not smooth enough
 - Kernel methods: kernel size?
 - h too large: too smooth
 - h too small: not smooth enough
 - K-Nearest Neighbor: K?
 - K too large: too smooth
 - K too small: not smooth enough

- This is a general problem of many probability density estimation methods
 - Including parametric methods and mixture models

Slide credit: Bernt Schiele
Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
 - Histograms scale poorly with increasing dimensionality.
 - Only suitable for relatively low-dimensional data.
 - Both k-NN and kernel density estimation require the entire data set to be stored.
 - Too expensive if the data set is large.
 - Simple parametric models are very restricted in what forms of distributions they can represent.
 - Only suitable if the data has the same general form.
- We need density models that are efficient and flexible!
 - Next lecture...
References and Further Reading

• More information in Bishop’s book
 - Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
 - Bayesian Learning: Ch. 1.2.3 and 2.3.6.
 - Nonparametric methods: Ch. 2.5.

• Additional information can be found in Duda & Hart
 - ML estimation: Ch. 3.2
 - Bayesian Learning: Ch. 3.3-3.5
 - Nonparametric methods: Ch. 4.1-4.5

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000