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Course Outline

e Fundamentals (2 weeks)
- Bayes Decision Theory
~ Probability Density Estimation

e Discriminative Approaches (5 weeks)
> Linear Discriminant Functions
~ Support Vector Machines
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models (4 weeks)
> Bayesian Networks
> Markov Random Fields

0
M
S
)
€
€
S
7))
o7
IE
c
S
®
@
—
)
=
<
(&)
a
p=

B. Leibe



Topics of This Lecture

e Recap: Bayes Decision Theory

e Parametric Methods
> Recap: Maximum Likelihood approach
> Bayesian Learning

e Non-Parametric Methods
> Histograms
~ Kernel density estimation
» K-Nearest Neighbors
> Kk-NN for Classification
» Bias-Variance tradeoff
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Recap: Bayes Decision Theory

e Optimal decision rule
- Decide for C, if

p(C1|z) > p(C2|)

~ This is equivalent to

p(x|C1)p(C1) > p(x|C2)p(Co)

> Which is again equivalent to (Likelihood-Ratio test)

p(z|Cy1) - p(C2)
p(z|C2) ~ p(C1)
N
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Decision threshold &

Slide credit: Bernt Schiele B. Leibe
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Recap: Bayes Decision Theory

* Decision regions: R,, R,, R,, -..
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RWTH
Recap: Classifying with Loss Functions

e We can formalize the intuition that different decisions
have different weights by introducing a loss matrix L,

Ly; = loss for decision C; if truth s Cy.

e Example: cancer diagnosis
Decision

cancer normal

cancer ( 0 1000 )

L

whd

Z, : Y — 3
cancer diagnosis = normal 1 0
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RWTH
Recap: Minimizing the Expected Loss

e Optimal solution is the one that minimizes the loss.
» But: loss function depends on the true class, which is unknown.

e Solution: Minimize the expected loss
E[L] = ZZ/ Ly;ip(x,Cp) dx
ko5 YR

e This can be done by choosing the regionsR. such that
E[L] = )  Li;p(Crlx)
k

= Adapted decision rule:

p(x|C1) < (L21 — La2) p(C2)

p(x|C2) (L12 — L11) p(Cy)

B. Leibe
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RWNTH
Recap: Gaussian (or Normal) Distribution

e One-dimensional case t
> Mean p
> Variance o2

Nalp.o?) = —=—exp {_ (2 —p)’ }

N(z|p,a?)

&
>

e Multi-dimensional case
> Mean p
> Covariance X
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RWTH
Recap: Maximum Likelihood Approach

e Computation of the likelihood
» Single data point: p(xnw)

~ Assumption: all data points X = {:cl, ..,xn} are independent
L(0) = p(X|0) = H p(x,|0)

» Log-likelihood
E@)=—InL(0) = — Zlnp(mn|9)

e Estimation of the parameters 6 (Learning)

> Maximize the likelihood (=minimize the negative log-likelihood)
— Take the derivative and set it to Zero.

-y B
p(x,|0)

Slide credit: Bernt Schiele B. Leibe
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O ERLE!

Topics of This Lecture

e Parametric Methods

> Recap: Maximum Likelihood approach
> Bayesian Learning
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RWTH
Recap: Maximum Likelihood - Limitations

e Maximum Likelihood has several significant limitations
» It systematically underestimates the variance of the distribution!
~ E.g. consider the case

N:LX:{CIZ‘l} I >

= Maximum-likelihood estimate:

- We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about this
effect.
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Deeper Reason

e Maximum Likelihood is a Frequentist concept

> In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

e This is in contrast to the Bayesian interpretation

> In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

> This uncertainty can be revised in the light of new evidence.

e Bayesians and Frequentists do not like /7
each other too well... =

s
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Bayesian vs. Frequentist View

e To see the difference...

~ Suppose we want to estimate the uncertainty whether the Arctic
ice cap will have disappeared by the end of the century.

» This question makes no sense in a Frequentist view, since the
event cannot be repeated numerous times.

> In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

~ If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o< Likelihood x Prior
~ This generally allows to get better uncertainty estimates for
many situations.
e Main Frequentist criticism

» The prior has to come from somewhere and if it is wrong, the
result will be worse.
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RWTH
Bayesian Approach to Parameter Learning

e Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

- In Bayesian learning, we consider 6 to be a random variable.

e This allows us to use knowledge about the parameters ¢

. i.e., to use a prior for 6 posterior
p(8ly)

» Training data then converts this .
prior distribution on 6 into prior

a posterior probability density. p(8)

~ The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.

Slide adapted from Bernt Schiele B. Leibe
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Bayesian Learning Approach

e Bayesian view:
» Consider the parameter vector 6 as a random variable.
> When estimating the parameters from a dataset X, we compute

p(x|X) = /p(aj, 0| X)do Assumption: given 0, this

doesn’t depend on X anymore

p(x,6|X) = p(x6, X)p(6]X)

p(2]X) = / p(]0)p(6]X)do
——

This is entirely determined by the parameter 6
(i.e., by the parametric form of the pdf).
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Bayesian Learning Approach

p(]X) = / p(]0)p(6]X)db
—
o) ZPXIO(0)

p(X)

p(X) = / p(X|0)p(6)d6 — / L(0)p(6)do

e Inserting this above, we obtain

p(x|X) = / p(x|9;é((9))p ) 4o —

Slide credit: Bernt Schiele B. Leibe

p(x|0)L(6)p(6)

[ L(0)p(6)do

do

16



Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 0 given the data set X.

Estimate for x based on Prior for the
parametric form 0 parameters 0

v

P(]0)L(O)p(0)
TL@w0)d

I

Normalization: integrate
over all possible values of ¢

p(z|X) = do

. If we now plug in a (suitable) prior p(f), we can estimate p(x|X)
from the data set X.
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Bayesian Density Estimation

e Discussion

p(z]X) = / o(zl0)p(0|X)do — [ PEIOLO)p(O)

p(
f L(0)p(8)do a0

. The probability p(8|X) makes the dependency of the estimate
on the data explicit.

. If p(8]X) is very small everywhere, but is large for one 4, then
p(z|X) = p(z|0)

= In this case, the estimate is determined entirely by 0.

=> The more uncertain we are about 6, the more we average over
all parameter values.
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Bayesian Density Estimation

e Problem

- In the general case, the integration over 6 is not possible
(or only possible stochastically).

e Example where an analytical solution is possible
> Normal distribution for the data, 02 assumed known and fixed.
» Estimate the distribution of the mean:

_ p(X[p)p(p)

> Prior: We assume a Gaussian prior over pu,

p(p) = N (plpo, 05) -

Slide credit: Bernt Schiele B. Leibe
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Bayesian Learning Approach

1
e Sample mean: = = ;

e Bayes estimate:
o?ug + Nogz s

IN = 2 T No2 p(u|X)

0
5 1N

) 2
E o, o5 O
(/)]
g e Note
S N=0 N—o
?Cl: ﬂé\f 224 MML |
= 2 o
= to =0

. 20
B. Leibe
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RWTH
Summary: ML vs. Bayesian Learning

e Maximum Likelihood
~ Simple approach, often analytically possible.

» Problem: estimation is biased, tends to overfit to the data.
= Often needs some correction or regularization.

> But:
- Approximation gets accurate for N — oo.

e Bayesian Learning
~ General approach, avoids the estimation bias through a prior.

~ Problems:
- Need to choose a suitable prior (not always obvious).
- Integral over 6 often not analytically feasible anymore.

> But:
- Efficient stochastic sampling techniques available.
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(In this lecture, we’ll use both concepts wherever appropriate)
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Topics of This Lecture

e Non-Parametric Methods
> Histograms
~ Kernel density estimation
» K-Nearest Neighbors
> Kk-NN for Classification
» Bias-Variance tradeoff
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Non-Parametric Methods

e Non-parametric representations
> Often the functional form of the distribution is unknown

X

e Estimate probability density from data
> Histograms
> Kernel density estimation (Parzen window / Gaussian kernels)
» k-Nearest-Neighbor

Slide credit: Bernt Schiele B. Leibe
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Histograms

e Basic idea:

~ Partition the data space into distinct
bins with widths A, and count the

. . 27
number of observations, n,, in each
bin.
147 1
Pi =
0 0.5 1

» Often, the same width is used for all bins, A, = A.

> This can be done, in principle, for any dimensionality D...

Toh

...but the required
number of bins
grows exponen-
o tially with D!

1 D=2 D=3 24
B. Leibe

Toh

e
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Image source: C.M. Bishop, 2006
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Histograms

RWTHAACHEN
UNIVERSITY

e The bin width A acts as a smoothing factor.

not smooth enough

about OK

too smooth

5 :
A = 0.04 |
0

0 0.5 1

5 :
A = 0.08 |
0

0 0.5 |

5 ;
| A =0.25 |
0

0 0.5 1

25
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Summary: Histograms

e Properties
» Very general. In the limit (N—o0), every probability density can
be represented.
> No need to store the data points once histogram is computed.
> Rather brute-force

e Problems

~ High-dimensional feature spaces
— D-dimensional space with M bins/dimension will require M?” bins!
= Requires an exponentially growing number of data points
=“Curse of dimensionality”

~ Discontinuities at bin edges

> Bin size?
- too large: too much smoothing
- too small: too much noise

. 26
Slide credit: Bernt Schiele B. Leibe
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RWTH
Statistically Better-Founded Approach

e Data point x comes from pdf p(x)
» Probability that = falls into small region R

P = /R p(y)dy

e If R is sufficiently small, p(x) is roughly constant
- Let V be the volume of R

. /R p(y)dy ~ p(x)V

e If the number N of samples is sufficiently large, we can
estimate P as

K K
P=_— = ~ ——
N Px) ~ 57

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Statistically Better-Founded Approach

K

p(x) ~ NV

fixed V fixed K
determine K determine V

Kernel Methods  K-Nearest Neighbor
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'y
e Kernel methods .
- Example: Determine _ 1>
the number K of data -° .,
points inside a fixed .|
window... -

Slide credit: Bernt Schiele B. Leibe



Kernel Methods

e Parzen Window
» Hypercube of dimension D with edge length h:

o 1, |’UJ7J %, Z:L,D -
k(u)—{ 0, else _- .

“Kernel function”

N
X — X
K=) k ")y V= [ k(u)du=nh"
SR V= [y
~ Probability density estimate:
N
K 1 X — X,
P) ~ N = o ;k( )

Slide credit: Bernt Schiele B. Leibe
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RWNTH
Kernel Methods: Parzen Window

e Interpretations

1. We place a kernel window k at Ly
location x and count how many o oo ®
data points fall inside it. o °

2. We place a kernel window k around

each data point x, and sum up
their influences at location x.

= Direct visualization of the density.

o Still, we have artificial discontinuities at the cube
boundaries...

> We can obtain a smoother density model if we choose a
smoother kernel function, e.g. a Gaussian

B. Leibe
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RWNTH
Kernel Methods: Gaussian Kernel

e Gaussian kernel
> Kernel function

K0 = G 3
K:ﬁ:k(x—xn) V:/k(u)duzl

> Probability density estimate

N
K 1 1 |x — x,||?
)~ 5 = v 2 2m)D72h { oh?

n=1
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Gauss Kernel: Examples

h = 0.005
not smooth enough

about OK

too smooth

0 0.5 1
h acts as a smoother.
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Kernel Methods

e |In general
> Any kernel such that

k(u) > 0, /k(u)du —

can be used. Then
N
K = Z k(x —xy,)
n=1

> And we get the probability density estimate

N
K 1

Slide adapted from Bernt Schiele B. Leibe
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RWNTH
Statistically Better-Founded Approach

K

p(x) ~ NV

fixed V fixed K
determine K determine V

Kernel Methods  K-Nearest Neighbor

r'y
- o K-Nearest Neighbor
_' . . > Increase the volume V
-° . until the K next data
.| points are found.
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K-Nearest Neighbor

e Nearest-Neighbor density estimation

> Fix K, estimate VVfrom the data. K=3
~ Consider a hypersphere centred @ °
on x and let it grow to a volume V* o© {@
that includes K of the given N data °
points.
> Then
K
X)) o~ .
p(x) = <
e Side note

» Strictly speaking, the model produced by K-NN is not a true
density model, because the integral over all space diverges.

- E.g. consider K =1 and a sample exactly on a data point x =z .
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k-Nearest Neighbor: Examples

not smooth enough

© about OK

@

S

£

=)

7]

g too smooth

% 0 0.5 1

= K acts as a smoother.

&

= . 36
B. Leibe
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RWTH
Summary: Kernel and k-NN Density Estimation

e Properties

» Very general. In the limit (N—o0), every probability density can
be represented.

> No computation involved in the training phase
= Simply storage of the training set

e Problems
~ Requires storing and computing with the entire dataset.
= Computational cost linear in the humber of data points.

= This can be improved, at the expense of some computation
during training, by constructing efficient tree-based search
structures.

> Kernel size / K in K-NN?

- Too large: too much smoothing
- Too small: too much noise
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RWNTH
K-Nearest Neighbor Classification

e Bayesian Classification

C 15 — PXIC)P(C))
 Here we have PR p(x)
p(x) ~ ]f_v
p(x|C;) ~ ]\Ifj%/ - p(Cj|x) =~ ]\Ifj.%/]]\\f; J\IT{V B };
(Rt A

Slide credit: Bernt Schiele B. Leibe
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K-Nearest Neighbors for Classification

e Results on an example data set

L7

* K acts as a smoothing parameter.

K=1
2 :
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oo ° 8..
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1 Te

e Theoretical guarantee

L7

> For N—oo, the error rate of the 1-NN classifier is never more

than twice the optimal error (obtained from the true conditional

class distributions).

B. Leibe
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Bias-Variance Tradeoff

e Probability density estimation

» Histograms: bin size?
- A too large: too smooth Too much bias
- A too small: not smooth enough Too much variance

> Kernel methods: kernel size?
— h too large: too smooth
— h too small: not smooth enough

» K-Nearest Neighbor: K?
— K too large: too smooth
— K too small: not smooth enough

e This is a general problem of many probability density
estimation methods
> Including parametric methods and mixture models

Slide credit: Bernt Schiele B. Leibe
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Discussion

e The methods discussed so far are all simple and easy to
apply. They are used in many practical applications.

e However...
~ Histograms scale poorly with increasing dimensionality.
= Only suitable for relatively low-dimensional data.

- Both k-NN and kernel density estimation require the entire data
set to be stored.

= Too expensive if the data set is large.

~ Simple parametric models are very restricted in what forms of
distributions they can represent.

= Only suitable if the data has the same general form.

e We need density models that are efficient and flexible!
= Next lecture...
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References and Further Reading

 More information in Bishop’s book
> Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

~ Bayesian Learning: Ch. 1.2.3 and 2.3.6.
> Nonparametric methods: Ch. 2.5.
e Additional information can be found in Duda & Hart
> ML estimation: Ch. 3.2
> Bayesian Learning: Ch. 3.3-3.5

> Nonparametrlc methods: Ch. 4.1-4.5
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