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Many slides adapted from B. Schiele 
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Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Support Vector Machines 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
2 
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Topics of This Lecture 

• Recap: Bayes Decision Theory 
 

• Parametric Methods 
 Recap: Maximum Likelihood approach 

 Bayesian Learning 
 

• Non-Parametric Methods 
 Histograms 

 Kernel density estimation 

 K-Nearest Neighbors 

 k-NN for Classification 

 Bias-Variance tradeoff 

 
 

 

3 
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Recap: Bayes Decision Theory 

• Optimal decision rule 

 Decide for C1 if 

 

 

 This is equivalent to  

 

 

 

 Which is again equivalent to (Likelihood-Ratio test) 

 

4 
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p(C1jx) > p(C2jx)

p(xjC1)p(C1) > p(xjC2)p(C2)

p(xjC1)
p(xjC2)

>
p(C2)
p(C1)

Decision threshold  

Slide credit: Bernt Schiele 
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Recap: Bayes Decision Theory 

• Decision regions: R1, R2, R3, … 

 

5 
B. Leibe Slide credit: Bernt Schiele 
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Recap: Classifying with Loss Functions 

• We can formalize the intuition that different decisions 
have different weights by introducing a loss matrix Lkj 

 

 

 

 

• Example: cancer diagnosis 

6 
B. Leibe 

Decision 
T
ru

th
 

Lcancer diagnosis =

Lkj = loss for decision Cj if truth is Ck:



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

 S
u

m
m

e
r 

‘1
5

 

Recap: Minimizing the Expected Loss 

• Optimal solution is the one that minimizes the loss. 

 But: loss function depends on the true class, which is unknown. 
 

• Solution: Minimize the expected loss 

 

 
 

• This can be done by choosing the regions      such that 

 

 

 Adapted decision rule: 

7 
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Rj

p(xjC1)
p(xjC2)

>
(L21 ¡L22)

(L12 ¡L11)

p(C2)
p(C1)
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• One-dimensional case 

 Mean ¹ 

 Variance ¾2 

 

 

 

 

• Multi-dimensional case 

 Mean ¹ 

 Covariance § 

 

Recap: Gaussian (or Normal) Distribution 

8 
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N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp
½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006 
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E(µ) = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Computation of the likelihood 

 Single data point: 
 

 Assumption: all data points                            are independent 

 

 
 

 Log-likelihood 

 
 
 

• Estimation of the parameters µ (Learning) 

 Maximize the likelihood (=minimize the negative log-likelihood) 

 Take the derivative and set it to zero. 

 

Recap: Maximum Likelihood Approach 

9 
B. Leibe 

L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele 

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng
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Topics of This Lecture 

• Recap: Bayes Decision Theory 
 

• Parametric Methods 
 Recap: Maximum Likelihood approach 

 Bayesian Learning 
 

• Non-Parametric Methods 
 Histograms 

 Kernel density estimation 

 K-Nearest Neighbors 

 k-NN for Classification 

 Bias-Variance tradeoff 
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Recap: Maximum Likelihood – Limitations 

• Maximum Likelihood has several significant limitations 

 It systematically underestimates the variance of the distribution! 

 E.g. consider the case  

 

 

 

 Maximum-likelihood estimate: 

 

 

 

 We say ML overfits to the observed data. 

 We will still often use ML, but it is important to know about this 

effect. 

11 
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x
N = 1;X = fx1g

x

¾̂ = 0 !

¹̂

Slide adapted from Bernt Schiele 
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Deeper Reason 

• Maximum Likelihood is a Frequentist concept 

 In the Frequentist view, probabilities are the frequencies of 

random, repeatable events. 

 These frequencies are fixed, but can be estimated more 

precisely when more data is available. 
 

• This is in contrast to the Bayesian interpretation 

 In the Bayesian view, probabilities quantify the uncertainty 

about certain states or events. 

 This uncertainty can be revised in the light of new evidence. 

 

• Bayesians and Frequentists do not like 

each other too well… 

12 
B. Leibe 
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Bayesian vs. Frequentist View 

• To see the difference… 

 Suppose we want to estimate the uncertainty whether the Arctic 

ice cap will have disappeared by the end of the century. 

 This question makes no sense in a Frequentist view, since the 

event cannot be repeated numerous times. 

 In the Bayesian view, we generally have a prior, e.g. from 

calculations how fast the polar ice is melting. 

 If we now get fresh evidence, e.g. from a new satellite, we may 

revise our opinion and update the uncertainty from the prior. 

 
 

 This generally allows to get better uncertainty estimates for 

many situations. 
 

• Main Frequentist criticism 

 The prior has to come from somewhere and if it is wrong, the 

result will be worse. 
13 
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Posterior / Likelihood £Prior
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Bayesian Approach to Parameter Learning 

• Conceptual shift 

 Maximum Likelihood views the true parameter vector µ to be 

unknown, but fixed. 

 In Bayesian learning, we consider µ to be a random variable. 
 

• This allows us to use knowledge about the parameters µ  

 i.e., to use a prior for µ 

 Training data then converts this 

prior distribution on µ into  

a posterior probability density. 

 

 
 

 The prior thus encodes knowledge we have about the type of 

distribution we expect to see for µ. 
14 
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Bayesian Learning Approach 

• Bayesian view:  

 Consider the parameter vector µ as a random variable. 

 When estimating the parameters from a dataset X, we compute 

15 
B. Leibe 

p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ 
(i.e., by the parametric form of the pdf). 

Slide adapted from Bernt Schiele 

Assumption: given µ, this 

doesn’t depend on X anymore 
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Bayesian Learning Approach 

 

 

 

 

 

 

 

 

• Inserting this above, we obtain 
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p(xjX) =

Z
p(xjµ)p(µjX)dµ

p(µjX) =
p(Xjµ)p(µ)

p(X)
=

p(µ)

p(X)
L(µ)

p(X) =

Z
p(Xjµ)p(µ)dµ =

Z
L(µ)p(µ)dµ

p(xjX) =

Z
p(xjµ)L(µ)p(µ)

p(X)
dµ =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Slide credit: Bernt Schiele 
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Bayesian Learning Approach 

• Discussion 

 

 

 

 

 

 

 

 

 
 

 If we now plug in a (suitable) prior p(µ), we can estimate  

from the data set X. 
17 
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p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate  

over all possible values of µ 

Likelihood of the parametric  

form µ given the data set X. 

Prior for the  

parameters µ 

Estimate for x based on 

parametric form µ 

p(xjX)
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Bayesian Density Estimation 

• Discussion 

 

 

 

 The probability             makes the dependency of the estimate 

on the data explicit. 
 

 If             is very small everywhere, but is large for one   , then 

 

 

 In this case, the estimate is determined entirely by    . 

 The more uncertain we are about µ, the more we average over 

all parameter values. 

18 
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p(xjX) =

Z
p(xjµ)p(µjX)dµ =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

p(µjX)

p(µjX) µ̂

p(xjX) ¼ p(xjµ̂)

Slide credit: Bernt Schiele 

µ̂
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Bayesian Density Estimation 

• Problem 

 In the general case, the integration over µ is not possible  

(or only possible stochastically). 

 

• Example where an analytical solution is possible 

 Normal distribution for the data, ¾2 assumed known and fixed. 

 Estimate the distribution of the mean: 

 

 

 

 Prior: We assume a Gaussian prior over ¹,  

19 
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p(¹jX) =
p(Xj¹)p(¹)

p(X)

Slide credit: Bernt Schiele 
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Bayesian Learning Approach 

 

• Sample mean: 

 

• Bayes estimate: 

 

 

 

 
 

• Note:  

20 
B. Leibe 

¹x =
1

N

NX

n=1

xn

¹N =
¾2¹0 +N¾20¹x

¾2 +N¾20

1

¾2N
=

1

¾20
+

N

¾2

p(¹jX)

¹0 = 0

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006 
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Summary: ML vs. Bayesian Learning 

• Maximum Likelihood 

 Simple approach, often analytically possible. 

 Problem: estimation is biased, tends to overfit to the data. 

 Often needs some correction or regularization. 

 But:  

– Approximation gets accurate for             . 
 

• Bayesian Learning 

 General approach, avoids the estimation bias through a prior. 

 Problems: 

– Need to choose a suitable prior (not always obvious). 

– Integral over µ often not analytically feasible anymore. 

 But: 

– Efficient stochastic sampling techniques available. 
 

(In this lecture, we’ll use both concepts wherever appropriate) 
21 

B. Leibe 

N !1
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Topics of This Lecture 

• Recap: Bayes Decision Theory 
 

• Parametric Methods 
 Recap: Maximum Likelihood approach 

 Bayesian Learning 
 

• Non-Parametric Methods 
 Histograms 

 Kernel density estimation 

 K-Nearest Neighbors 

 k-NN for Classification 

 Bias-Variance tradeoff 

 
 

 

22 
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Non-Parametric Methods 

• Non-parametric representations 

 Often the functional form of the distribution is unknown 

 

 

 

 

 

 

 

• Estimate probability density from data 

 Histograms 

 Kernel density estimation (Parzen window / Gaussian kernels) 

 k-Nearest-Neighbor 

23 
B. Leibe 

x

Slide credit: Bernt Schiele 
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Histograms 

• Basic idea: 

 Partition the data space into distinct  
bins with widths ¢i and count the  

number of observations, ni, in each  

bin. 

 

 
 

 Often, the same width is used for all bins, ¢i = ¢. 
 

 This can be done, in principle, for any dimensionality D…  

24 
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N = 1 0

0 0.5 1
0

1

2

3

…but the required 

number of bins 

grows exponen- 
tially with D! 

Image source: C.M. Bishop, 2006 
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Histograms 

• The bin width M acts as a smoothing factor. 

25 
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not smooth enough 

about OK 

too smooth 

Image source: C.M. Bishop, 2006 
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Summary: Histograms 

• Properties 

 Very general. In the limit (N!1), every probability density can 

be represented. 

 No need to store the data points once histogram is computed. 

 Rather brute-force 
 

• Problems 

 High-dimensional feature spaces 

– D-dimensional space with M bins/dimension will require MD bins! 

 Requires an exponentially growing number of data points 

“Curse of dimensionality” 

 Discontinuities at bin edges 

 Bin size? 

– too large: too much smoothing 

– too small: too much noise 

 26 
B. Leibe Slide credit: Bernt Schiele 
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P =

Z

R
p(y)dy

Statistically Better-Founded Approach 

• Data point x comes from pdf p(x) 
 Probability that x falls into small region R 

 

 

• If R is sufficiently small, p(x) is roughly constant 

 Let V  be the volume of R 
 

 

 

• If the number N of samples is sufficiently large, we can 

estimate P as 

27 
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P =

Z

R
p(y)dy ¼ p(x)V

P =
K

N
) p(x) ¼ K

NV

Slide credit: Bernt Schiele 
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Statistically Better-Founded Approach 

 

 

 

 

 

 

 

 

• Kernel methods 

 Example: Determine  
the number K of data  

points inside a fixed  

window… 
28 

B. Leibe 

p(x) ¼ K

NV

fixed V 

determine K 

fixed K 

determine V 

Kernel Methods K-Nearest Neighbor 

Slide credit: Bernt Schiele 
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Kernel Methods 

• Parzen Window 

 Hypercube of dimension D with edge length h: 

 

 

 

 

 

 

 

 

 Probability density estimate: 

29 
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k(u) =

½
1; jui · 1

2
; i = 1; : : : ; D

0; else

K =

NX

n=1

k(
x¡ xn

h
) V =

Z
k(u)du = hd

p(x) ¼ K

NV
=

1

NhD

NX

n=1

k(
x¡ xn

h
)

“Kernel function” 

Slide credit: Bernt Schiele 
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Kernel Methods: Parzen Window 

• Interpretations 

1. We place a kernel window k at 

location x and count how many  

data points fall inside it. 

 

2. We place a kernel window k around 

each data point xn and sum up 

their influences at location x. 

   Direct visualization of the density. 

 

• Still, we have artificial discontinuities at the cube 

boundaries… 

 We can obtain a smoother density model if we choose a 

smoother kernel function, e.g. a Gaussian 
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k(u) =
1

(2¼h2)1=2
exp

½
¡ u

2

2h2

¾

Kernel Methods: Gaussian Kernel 

• Gaussian kernel 

 Kernel function 

 

 

 

 

 

 

 

 Probability density estimate 
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p(x) ¼ K

NV
=

1

N

NX

n=1

1

(2¼)D=2h
exp

½
¡jjx¡ xnjj

2

2h2

¾

K =

NX

n=1

k(x¡ xn) V =

Z
k(u)du = 1

Slide credit: Bernt Schiele 
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Gauss Kernel: Examples 
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not smooth enough 

about OK 

too smooth 

h acts as a smoother. 

Image source: C.M. Bishop, 2006 
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Kernel Methods 

• In general 

 Any kernel such that 

 

 

 

can be used. Then 

 

 

 

 

 And we get the probability density estimate 
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K =

NX

n=1

k(x¡ xn)

p(x) ¼ K

NV
=

1

N

NX

n=1

k(x¡ xn)

Slide adapted from Bernt Schiele 
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Statistically Better-Founded Approach 
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p(x) ¼ K

NV

fixed V 

determine K 

fixed K 

determine V 

Kernel Methods K-Nearest Neighbor 

• K-Nearest Neighbor 

 Increase the volume V 

until the K next data 

points are found. 

 

Slide credit: Bernt Schiele 
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K-Nearest Neighbor 

• Nearest-Neighbor density estimation 

 Fix K, estimate V from the data.  

 Consider a hypersphere centred  
on x and let it grow to a volume V ?  

that includes K of the given N             data  

points.  

 Then 

 

 

 

• Side note  

 Strictly speaking, the model produced by K-NN is not a true 

density model, because the integral over all space diverges. 

 E.g. consider K = 1 and a sample exactly on a data point x = xj. 
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K = 3



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a
c
h

in
e
 L

e
a
rn

in
g

 S
u

m
m

e
r 

‘1
5

 

 

k-Nearest Neighbor: Examples 
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not smooth enough 

about OK 

too smooth 

K acts as a smoother. 

Image source: C.M. Bishop, 2006 
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Summary: Kernel and k-NN Density Estimation 

• Properties 

 Very general. In the limit (N!1), every probability density can 

be represented. 

 No computation involved in the training phase 

 Simply storage of the training set  
 

• Problems 

 Requires storing and computing with the entire dataset. 

 Computational cost linear in the number of data points. 

 This can be improved, at the expense of some computation 

during training, by constructing efficient tree-based search 

structures. 

 Kernel size / K in K-NN? 

– Too large: too much smoothing 

– Too small: too much noise 
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K-Nearest Neighbor Classification 

• Bayesian Classification 

 

 

• Here we have 
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p(x) ¼ K

NV

p(Cjjx) =
p(xjCj)p(Cj)

p(x)

p(xjCj) ¼
Kj

NjV
p(Cjjx) ¼

Kj

NjV

Nj

N

NV

K
=

Kj

K

p(Cj) ¼
Nj

N

k-Nearest Neighbor 

classification 

Slide credit: Bernt Schiele 
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K-Nearest Neighbors for Classification 
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K = 1 K = 3 

Image source: C.M. Bishop, 2006 
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K-Nearest Neighbors for Classification 

• Results on an example data set 

 

 

 

 

 

 

 

• K acts as a smoothing parameter. 

• Theoretical guarantee 

 For N!1, the error rate of the 1-NN classifier is never more 

than twice the optimal error (obtained from the true conditional 

class distributions). 
40 

B. Leibe Image source: C.M. Bishop, 2006 
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Bias-Variance Tradeoff 

• Probability density estimation 

 Histograms: bin size? 

–  M too large: too smooth 

–  M too small: not smooth enough 

 Kernel methods: kernel size? 

– h too large: too smooth 

– h too small: not smooth enough 

 K-Nearest Neighbor: K? 

– K too large: too smooth 

– K too small: not smooth enough 

 

• This is a general problem of many probability density 

estimation methods 

 Including parametric methods and mixture models 
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Too much bias 

Too much variance 

Slide credit: Bernt Schiele 
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Discussion 

• The methods discussed so far are all simple and easy to 

apply. They are used in many practical applications. 

• However… 

 Histograms scale poorly with increasing dimensionality. 

 Only suitable for relatively low-dimensional data. 
 

 Both k-NN and kernel density estimation require the entire data 

set to be stored. 

 Too expensive if the data set is large. 
 

 Simple parametric models are very restricted in what forms of 

distributions they can represent. 

 Only suitable if the data has the same general form. 
 

• We need density models that are efficient and flexible! 

 Next lecture… 
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References and Further Reading 

• More information in Bishop’s book 

 Gaussian distribution and ML:  Ch. 1.2.4 and 2.3.1-2.3.4. 

 Bayesian Learning:   Ch. 1.2.3 and 2.3.6.  

 Nonparametric methods:  Ch. 2.5. 

• Additional information can be found in Duda & Hart 

 ML estimation:   Ch. 3.2 

 Bayesian Learning:  Ch. 3.3-3.5 

 Nonparametric methods: Ch. 4.1-4.5 
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