Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff

Recap: Bayes Decision Theory

- Optimal decision rule
 - Decide for C_1 if
 $$p(C_1|x) > p(C_2|x)$$
 - This is equivalent to
 $$p(x|C_1)p(C_1) > p(x|C_2)p(C_2)$$
 - Which is again equivalent to (Likelihood-Ratio test)
 $$\frac{p(x|C_1)}{p(x|C_2)} > \frac{p(C_1)}{p(C_2)}$$
 - Decision threshold θ

Recap: Classifying with Loss Functions

- We can formalize the intuition that different decisions have different weights by introducing a loss matrix L_{kj}
 $$L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k.$$
 - Example: cancer diagnosis
 $$L_{\text{cancer diagnosis}} = \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$$
Recap: Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - But: loss function depends on the true class, which is unknown.

- Solution: Minimize the expected loss
 \[E[L] = \sum_k \sum_j \int_{R_j} L_{kj} p(x, C_k) \, dx \]
 - This can be done by choosing the regions \(R_j \) such that
 \[E[L] = \sum_k L_{kj} p(C_k ; x) \]
 \[\Rightarrow \text{Adapted decision rule:} \]
 \[\frac{p(x|C_1)}{p(x|C_2)} > \frac{(L_{21} - L_{22}) p(C_2)}{(L_{12} - L_{11}) p(C_1)} \]

Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - Single data point: \(p(x_n|\theta) \)
 - Assumption: all data points \(X = \{x_1, \ldots, x_n\} \) are independent
 \[L(\theta) = p(X|\theta) = \prod_{n=1}^N p(x_n|\theta) \]
 - Log-likelihood
 \[E(\theta) = -\ln L(\theta) = -\sum_{n=1}^N \ln p(x_n|\theta) \]
 - Estimation of the parameters \(\theta \) (Learning)
 - Maximize the likelihood (minimize the negative log-likelihood)
 \[\Rightarrow \text{Take the derivative and set it to zero.} \]
 \[\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^N \frac{\partial}{\partial \theta} p(x_n|\theta) = 0 \]

Recap: Maximum Likelihood - Limitations

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case
 \[N = 1, X = \{x_1\} \]
 \[\Rightarrow \text{Maximum-likelihood estimate:} \]
 \[\hat{\sigma} = 0 ! \]
 - We say ML overfits to the observed data.
 - We will still often use ML, but it is important to know about this effect.

Recap: Gaussian (or Normal) Distribution

- One-dimensional case
 - Mean \(\mu \)
 - Variance \(\sigma^2 \)
 \[\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} \]

- Multi-dimensional case
 - Mean \(\mu \)
 - Covariance \(\Sigma \)
 \[\mathcal{N}(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - K-Nearest Neighbors
 - K-NN for Classification
 - Bias-Variance tradeoff

Deeper Reason

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
 - This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...
To see the difference...
- Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
- This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
- In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
- If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

\[Posterior = \frac{Likelihood \times Prior}{\text{Normalisation: integrate over all possible values of } \theta} \]

This generally allows to get better uncertainty estimates for many situations.

Main Frequentist criticism
- The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
 - Maximum Likelihood views the true parameter vector \(\theta \) to be unknown, but fixed.
 - In Bayesian learning, we consider \(\theta \) to be a random variable.
- This allows us to use knowledge about the parameters \(\theta \)
 - i.e., to use a prior for \(\theta \)
 - Training data then converts this prior distribution on \(\theta \) into a posterior probability density.
- The prior thus encodes knowledge we have about the type of distribution we expect to see for \(\theta \).

Bayesian Learning Approach

- Bayesian view:
 - Consider the parameter vector \(\theta \) as a random variable.
 - When estimating the parameters from a dataset \(X \), we compute

\[p(x|X) = \int p(x, \theta|X)d\theta \]

\[p(x, \theta|X) = p(x|\theta, X)p(\theta|X) \]

\[p(x|X) = \int p(x|\theta)p(\theta|X)d\theta \]

This is entirely determined by the parameter \(\theta \) (i.e., by the parametric form of the pdf).

Assumption: given \(\theta \), this doesn’t depend on \(X \) anymore

Bayesian Learning Approach

- Inserting this above, we obtain

\[p(x|X) = \frac{\int p(x|\theta)L(\theta)p(\theta)d\theta}{p(X)} = \frac{\int p(x|\theta)L(\theta)p(\theta)d\theta}{\int L(\theta)p(\theta)d\theta} \]

Bayesian Density Estimation

- Discussion

\[p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)d\theta}{\int L(\theta)p(\theta)d\theta} \]

- The probability \(p(\theta|X) \) makes the dependency of the estimate on the data explicit.
 - If \(p(\theta|X) \) is very small everywhere, but is large for one \(\theta \), then \(p(x|X) \approx p(x|\theta) \)
 - In this case, the estimate is determined entirely by \(\theta \).
 - The more uncertain we are about \(\theta \), the more we average over all parameter values.
Bayesian Density Estimation

- **Problem**
 - In the general case, the integration over \(\theta \) is not possible (or only possible stochastically).

- **Example where an analytical solution is possible**
 - Normal distribution for the data, \(\sigma^2 \) assumed known and fixed.
 - Estimate the distribution of the mean:
 \[
 p(\mu | X) = \frac{p(X | \mu) p(\mu)}{p(X)}
 \]
 - Prior: We assume a Gaussian prior over \(\mu \),
 \[
 \mu_0 = \mu, \quad \sigma^2_0 = \frac{1}{N_0}
 \]

Bayesian Learning Approach

- **Sample mean:**
 \[
 \bar{X} = \frac{1}{N} \sum_{n=1}^{N} x_n
 \]

- **Bayes estimate:**
 \[
 \mu_N = \frac{\sigma^2 \mu_0 + N \sigma^2 \bar{X}}{\sigma^2 + N \sigma^2_0}
 \]

- **Note:**
 \[
 \frac{\mu_N}{\frac{\sigma^2_0}{\sigma_0^2}} = \frac{\mu_0}{\frac{\sigma_0^2}{\sigma^2}}
 \]
 \[
 \frac{\mu_0}{\frac{\sigma_0^2}{\sigma^2}} \rightarrow 0 \quad \text{as} \quad N \
 \]
 \[
 \frac{\mu_0}{\frac{\sigma_0^2}{\sigma^2}} \rightarrow \mu_N \quad \text{as} \quad N \rightarrow \infty
 \]

Summary: ML vs. Bayesian Learning

- **Maximum Likelihood**
 - Simple approach, often analytically possible.
 - Problem: estimation is biased, tends to overfit to the data.
 - Often needs some correction or regularization.
 - But: Approximation gets accurate for \(N \rightarrow \infty \).

- **Bayesian Learning**
 - General approach, avoids the estimation bias through a prior.
 - Problems:
 - Need to choose a suitable prior (not always obvious).
 - Integral over \(\theta \) often not analytically feasible anymore.
 - But:
 - Efficient stochastic sampling techniques available.

Topics of This Lecture

- Recap: Bayes Decision Theory
- Parametric Methods
 - Recap: Maximum Likelihood approach
 - Bayesian Learning
- Non-Parametric Methods
 - Histograms
 - Kernel density estimation
 - k-Nearest Neighbors
 - k-NN for Classification
 - Bias-Variance tradeoff

Non-Parametric Methods

- **Non-parametric representations**
 - Often the functional form of the distribution is unknown

- **Estimate probability density from data**
 - Histograms
 - Kernel density estimation (Parzen window / Gaussian kernels)
 - k-Nearest-Neighbor

Histograms

- **Basic idea:**
 - Partition the data space into distinct bins with widths \(\Delta_i \) and count the number of observations, \(n_i \), in each bin.
 \[
 p_i = \frac{n_i}{N \Delta_i}
 \]
 - Often, the same width is used for all bins, \(\Delta_i = \Delta \).
 - This can be done, in principle, for any dimensionality \(D \)
 - ...but the required number of bins grows exponentially with \(D \)
Histories

- The bin width Δ acts as a smoothing factor.

 ![Histograms](image)

Summary: Histograms

- Properties
 - Very general. In the limit ($N \to \infty$), every probability density can be represented.
 - No need to store the data points once histogram is computed.
 - Rather brute-force

- Problems
 - High-dimensional feature spaces
 - D-dimensional space with M bins/dimension will require M^D bins!
 - Requires an exponentially growing number of data points
 - "Curse of dimensionality"
 - Discontinuities at bin edges
 - Bin size?
 - too large: too much smoothing
 - too small: too much noise

Statistically Better-Founded Approach

- Data point x comes from pdf $p(x)$
 - Probability that x falls into small region \mathcal{R}
 \[P = \int_{\mathcal{R}} p(y) dy \]
 - If \mathcal{R} is sufficiently small, $p(x)$ is roughly constant
 - Let V be the volume of \mathcal{R}
 \[P = \int_{\mathcal{R}} p(y) dy \approx p(x) V \]
 - If the number N of samples is sufficiently large, we can estimate P as
 \[P = \frac{K}{N} \Rightarrow p(x) \approx \frac{K}{NV} \]

Kernel Methods

- Parzen Window
 - Hypercube of dimension D with edge length h:
 \[k(u) = \begin{cases} 1 & \text{if } |u_i \cdot \frac{1}{2^D} i = 1, \ldots, D \\
 0 & \text{else} \end{cases} \]
 \["Kernel function" \]
 - Probability density estimate:
 \[p(x) \approx \frac{K}{NV} = \frac{1}{NH^D} \sum_{n=1}^{N} k \left(\frac{x - x_n}{h} \right) \]

Kernel Methods: Parzen Window

- Interpretations
 1. We place a kernel window i at location x and count how many data points fall inside it.
 2. We place a kernel window i around each data point x_n and sum up their influences at location x.
 \[\Rightarrow \text{Direct visualization of the density.} \]
 - Still, we have artificial discontinuities at the cube boundaries...
 - We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian
Kernel Methods: Gaussian Kernel

- Gaussian kernel
 - Kernel function
 \[k(u) = \frac{1}{(2\pi h^2)^{1/2}} \exp \left\{ -\frac{u^2}{2h^2} \right\} \]
 - Probability density estimate
 \[p(x) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{1/2}} \exp \left\{ -\frac{||x - x_n||^2}{2h^2} \right\} \]

Gauss Kernel: Examples

Statistically Better-Founded Approach

- Kernel Methods
 - In general
 - Any kernel such that
 \[k(u) \geq 0, \quad \int k(u) \, du = 1 \]
 can be used. Then
 \[K = \sum_{n=1}^{N} k(x - x_n) \]
 - And we get the probability density estimate
 \[p(x) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} k(x - x_n) \]

K-Nearest Neighbor

- Nearest-Neighbor density estimation
 - Fix \(k \), estimate \(V \) from the data.
 - Consider a hypersphere centred on \(x \) and let it grow to a volume \(V^* \) that includes \(K \) of the given \(N \) data points.
 - Then
 \[p(x) \approx \frac{K}{NV^*} \]
 - Side note
 - Strictly speaking, the model produced by K-NN is not a true density model, because the integral over all space diverges.
 - E.g. consider \(K = 1 \) and a sample exactly on a data point \(x = x_i \).

K-Nearest Neighbor: Examples
Summary: Kernel and k-NN Density Estimation

- **Properties**
 - Very general. In the limit \(N \to \infty\), every probability density can be represented.
 - No computation involved in the training phase
 - Simply storage of the training set

- **Problems**
 - Requires storing and computing with the entire dataset.
 - Computational cost linear in the number of data points.
 - This can be improved, at the expense of some computation during training, by constructing efficient tree-based search structures.
 - Kernel size \(K\) in K-NN?
 - Too large: too much smoothing
 - Too small: too much noise

K-Nearest Neighbors for Classification

- **Bayesian Classification**
 \[
 p(C_j | x) = \frac{p(x | C_j) p(C_j)}{p(x)}
 \]

- **Here we have**
 \[
 p(x) \approx \frac{K}{N V} \\
 p(x | C_j) \approx \frac{K_j}{N_j V} \\
 p(C_j) \approx \frac{N_j}{N}
 \]

 \[
 p(C_j | x) \approx \frac{K_j N_j V}{N K} = \frac{K_j}{K}
 \]

K-Nearest Neighbors for Classification

- **Results on an example data set**

 - \(K\) acts as a smoothing parameter.
 - Theoretical guarantee
 - For \(N \to \infty\), the error rate of the 1-NN classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Bias-Variance Tradeoff

- **Probability density estimation**
 - Histograms: bin size?
 - \(h\) too large: too smooth
 - \(h\) too small: not smooth enough
 - Kernel methods: kernel size?
 - \(h\) too large: too smooth
 - \(h\) too small: not smooth enough
 - K-Nearest Neighbor: \(K\)?
 - \(K\) too large: too smooth
 - \(K\) too small: not smooth enough

 - This is a general problem of many probability density estimation methods
 - Including parametric methods and mixture models

Discussion

- The methods discussed so far are all simple and easy to apply. They are used in many practical applications.
- However...
 - Histograms scale poorly with increasing dimensionality.
 - Only suitable for relatively low-dimensional data.
 - Both k-NN and kernel density estimation require the entire data set to be stored.
 - Too expensive if the data set is large.
 - Simple parametric models are very restricted in what forms of distributions they can represent.
 - Only suitable if the data has the same general form.

- We need density models that are efficient and flexible!
 - Next lecture...
References and Further Reading

- More information in Bishop’s book
 - Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
 - Bayesian Learning: Ch. 1.2.3 and 2.3.6.
 - Nonparametric methods: Ch. 2.5.

- Additional information can be found in Duda & Hart
 - ML estimation: Ch. 3.2
 - Bayesian Learning: Ch. 3.3-3.5
 - Nonparametric methods: Ch. 4.1-4.5

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000