Machine Learning - Lecture 1

Introduction

09.04.2015

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de

Many slides adapted from B. Schiele
Organization

• Lecturer
 ➢ Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)

• Assistants
 ➢ Ishrat Badami (badami@vision.rwth-aachen.de)
 ➢ Michael Kramp (kramp@vision.rwth-aachen.de)

• Course webpage
 ➢ http://www.vision.rwth-aachen.de/teaching/
 ➢ Slides will be made available on the webpage
 ➢ There is also an L2P electronic repository

• Please subscribe to the lecture on the Campus system!
 ➢ Important to get email announcements and L2P access!
Language

- Official course language will be English
 - If at least one English-speaking student is present.
 - If not... you can choose.

- However...
 - Please tell me when I’m talking too fast or when I should repeat something in German for better understanding!
 - You may at any time ask questions in German!
 - You may turn in your exercises in German.
 - You may take the oral exam in German.
Organization

• Structure: 3V (lecture) + 1Ü (exercises)
 - 6 EECS credits
 - Part of the area “Applied Computer Science”

• Place & Time
 - Lecture: Tue 14:15 - 15:45 room UMIC 025
 - Lecture/Exercises: Thu 14:15 - 15:45 room UMIC 025

• Exam
 - Written exam
 - Towards the end of the semester, there will be a proposed date
Exercises and Supplementary Material

• Exercises
 - Typically 1 exercise sheet every 2 weeks.
 - Pen & paper and Matlab based exercises
 - Hands-on experience with the algorithms from the lecture.
 - Send your solutions the night before the exercise class.
 - Need to reach $\geq 50\%$ of the points to qualify for the exam!

• Teams are encouraged!
 - You can form teams of up to 3 people for the exercises.
 - Each team should only turn in one solution.
 - But list the names of all team members in the submission.
Course Webpage

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Content</th>
<th>Slides</th>
<th>Related Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.04.15</td>
<td>no class</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>09.04.15</td>
<td>Introduction</td>
<td>Introduction, Probability Theory, Bayes</td>
<td>pdf, fullpage</td>
<td>Bishop Ch. 1.1, 1.2.1-1.2.3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Theory, Minimizing Expected Loss</td>
<td></td>
<td>1.5.1-1.5.4</td>
</tr>
<tr>
<td>14.04.15</td>
<td>Exercise 0</td>
<td>Intro Matlab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16.04.15</td>
<td>Prob. Density</td>
<td>Nonparametric Methods, Histograms, Kernel</td>
<td>-</td>
<td>Bishop Ch. 2.5, 1.2.4,</td>
</tr>
<tr>
<td>Estimation I</td>
<td></td>
<td>Density Estimation, Parametric Methods</td>
<td></td>
<td>2.3.1-2.3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gaussian Distribution, Maximum Likelihood,</td>
<td></td>
<td>Bishop chapter 9, original</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bayesian Learning, Bias-Variance Problem</td>
<td></td>
<td>Dempster & Laird EM paper,</td>
</tr>
<tr>
<td>21.04.15</td>
<td>Prob. Density</td>
<td>Mixture of Gaussians, k-Means</td>
<td>-</td>
<td>Bilmes' EM tutorial</td>
</tr>
<tr>
<td>Estimation II</td>
<td></td>
<td>Clustering, EM-Clustering, EM Algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.04.15</td>
<td>Linear</td>
<td>Linear Discriminant Functions, Least-</td>
<td>-</td>
<td>Bishop chapter 4.1</td>
</tr>
<tr>
<td>Discriminant Functions</td>
<td></td>
<td>squares Classification, Generalized Linear Models</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Textbooks

- Most lecture topics will be covered in Bishop’s book.
- Some additional topics can be found in Duda & Hart.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

(available in the library’s “Handapparat”)

R.O. Duda, P.E. Hart, D.G. Stork
Pattern Classification
2nd Ed., Wiley-Interscience, 2000

- Research papers will be given out for some topics.
 - Tutorials and deeper introductions.
 - Application papers
How to Find Us

- **Office:**
 - UMIC Research Centre
 - Mies-van-der-Rohe-Strasse 15, room 124

- **Office hours**
 - If you have questions to the lecture, come to Ishrat or Michael.
 - My regular office hours will be announced (additional slots are available upon request)
 - Send us an email before to confirm a time slot.

Questions are welcome!
Machine Learning

- **Statistical Machine Learning**
 - Principles, methods, and algorithms for learning and prediction on the basis of past evidence

- **Already everywhere**
 - Speech recognition (e.g. speed-dialing)
 - Computer vision (e.g. face detection)
 - Hand-written character recognition (e.g. letter delivery)
 - Information retrieval (e.g. image & video indexing)
 - Operation systems (e.g. caching)
 - Fraud detection (e.g. credit cards)
 - Text filtering (e.g. email spam filters)
 - Game playing (e.g. strategy prediction)
 - Robotics (e.g. prediction of battery lifetime)
Machine Learning

• Goal
 - Machines that *learn to perform a task from experience*

• Why?
 - Crucial component of every intelligent/autonomous system
 - Important for a system’s adaptability
 - Important for a system’s generalization capabilities
 - Attempt to understand human learning
Machine Learning: Core Questions

- *Learning to perform a task from experience*

- **Learning**
 - Most important part here!
 - We do not want to encode the knowledge ourselves.
 - The machine should *learn* the relevant criteria automatically from past observations and *adapt* to the given situation.

- **Tools**
 - Statistics
 - Probability theory
 - Decision theory
 - Information theory
 - Optimization theory

Slide credit: Bernt Schiele
Machine Learning: Core Questions

- **Learning to perform a task from experience**

- **Task**
 - Can often be expressed through a mathematical function
 \[y = f(x; w) \]
 - \(x \): Input
 - \(y \): Output
 - \(w \): Parameters (this is what is “learned”)

- **Classification vs. Regression**
 - Regression: continuous \(y \)
 - Classification: discrete \(y \)
 - E.g. class membership, sometimes also posterior probability

Slide credit: Bernt Schiele
Example: Regression

- Automatic control of a vehicle

\[f(x;w) \]
Examples: Classification

- Email filtering \(x \in [a-z]^+ \rightarrow y \in \{\text{important, spam}\} \)

- Character recognition

- Speech recognition
Machine Learning: Core Problems

- **Input** x:

- **Features**
 - Invariance to irrelevant input variations
 - Selecting the “right” features is crucial
 - Encoding and use of “domain knowledge”
 - Higher-dimensional features are more discriminative.

- **Curse of dimensionality**
 - Complexity increases exponentially with number of dimensions.
Machine Learning: Core Questions

- *Learning to perform a task from experience*

- Performance: “99% correct classification”
 - Of what???
 - Characters? Words? Sentences?
 - Speaker/writer independent?
 - Over what data set?
 - ...

- “The car drives without human intervention 99% of the time on country roads”
Machine Learning: Core Questions

• Learning to perform a task from experience

• Performance measure: Typically one number
 ➢ % correctly classified letters
 ➢ Average driving distance (until crash...)
 ➢ % games won
 ➢ % correctly recognized words, sentences, answers

• Generalization performance
 ➢ Training vs. test
 ➢ “All” data
Machine Learning: Core Questions

• *Learning to perform a task from experience*

• Performance measure: more subtle problem
 - Also necessary to compare partially correct outputs.
 - How do we weight different kinds of errors?

 - Example: L2 norm
Machine Learning: Core Questions

• Learning to perform a task from experience

• What data is available?
 - Data with labels: *supervised learning*
 - Images / speech with target labels
 - Car sensor data with target steering signal
 - Data without labels: *unsupervised learning*
 - Automatic clustering of sounds and phonemes
 - Automatic clustering of web sites
 - Some data with, some without labels: *semi-supervised learning*
 - No examples: *learning by doing*
 - Feedback/rewards: *reinforcement learning*
Machine Learning: Core Questions

• \(y = f(x; w) \)
 - \(w \): characterizes the family of functions
 - \(w \): indexes the space of hypotheses
 - \(w \): vector, connection matrix, graph, ...

Slide credit: Bernt Schiele
Machine Learning: Core Questions

- **Learning** to perform a task from experience

- **Learning**
 - Most often learning = optimization
 - Search in hypothesis space
 - Search for the “best” function / model parameter w
 - I.e. maximize $y = f(x; w)$ w.r.t. the performance measure

Slide credit: Bernt Schiele
Course Outline

• Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation

• Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns

• Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields
 - Probabilistic Inference
Topics of This Lecture

• (Re-)view: Probability Theory
 ➢ Probabilities
 ➢ Probability densities
 ➢ Expectations and covariances

• Bayes Decision Theory
 ➢ Basic concepts
 ➢ Minimizing the misclassification rate
 ➢ Minimizing the expected loss
 ➢ Discriminant functions
Probability Theory

“Probability theory is nothing but common sense reduced to calculation.”

Pierre-Simon de Laplace, 1749-1827

Probability Theory

- **Example: apples and oranges**
 - We have two boxes to pick from.
 - Each box contains both types of fruit.
 - What is the probability of picking an apple?

- **Formalization**
 - Let $B \in \{r, b\}$ be a random variable for the box we pick.
 - Let $F \in \{a, o\}$ be a random variable for the type of fruit we get.
 - Suppose we pick the red box 40% of the time. We write this as $p(B = r) = 0.4$ and $p(B = b) = 0.6$.
 - The probability of picking an apple **given** a choice for the box is $p(F = a \mid B = r) = 0.25$ and $p(F = a \mid B = b) = 0.75$.
 - What is the probability of picking an apple?
 $$p(F = a) = ?$$
Probability Theory

• More general case
 - Consider two random variables $X \in \{x_i\}$ and $Y \in \{y_j\}$
 - Consider N trials and let

 $n_{ij} = \# \{X = x_i \wedge Y = y_j\}$

 $c_i = \# \{X = x_i\}$

 $r_j = \# \{Y = y_j\}$

• Then we can derive
 - Joint probability

 $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$

 - Marginal probability

 $p(X = x_i) = \frac{c_i}{N}$

 - Conditional probability

 $p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$
Probability Theory

• Rules of probability
 - Sum rule
 \[p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij} = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \]
 - Product rule
 \[p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N} = p(Y = y_j | X = x_i) p(X = x_i) \]
The Rules of Probability

- Thus we have

<table>
<thead>
<tr>
<th>Sum Rule</th>
<th>$p(X) = \sum_Y p(X, Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Rule</td>
<td>$p(X, Y) = p(Y</td>
</tr>
</tbody>
</table>

- From those, we can derive

| **Bayes’ Theorem** | $p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$ |
|---------------------|----------------------------------|
| **where** | $p(X) = \sum_Y p(X|Y)p(Y)$ |

B. Leibe
Probability Densities

- Probabilities over continuous variables are defined over their probability density function (pdf) $p(x)$.
 \[p(x \in (a, b)) = \int_a^b p(x) \, dx \]

- The probability that x lies in the interval $(-\infty, z)$ is given by the cumulative distribution function
 \[P(z) = \int_{-\infty}^z p(x) \, dx \]
Expectations

- The average value of some function $f(x)$ under a probability distribution $p(x)$ is called its **expectation**

 \[
 \mathbb{E}[f] = \sum_x p(x) f(x) \quad \mathbb{E}[f] = \int p(x) f(x) \, dx
 \]

 discrete case \hspace{1cm} continuous case

- If we have a finite number N of samples drawn from a pdf, then the expectation can be approximated by

 \[
 \mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)
 \]

- We can also consider a **conditional expectation**

 \[
 \mathbb{E}_x[f | y] = \sum_x p(x | y) f(x)
 \]

B. Leibe
Variances and Covariances

- The **variance** provides a measure how much variability there is in \(f(x) \) around its mean value \(\mathbb{E}[f(x)] \).

\[
\text{var}(f) = \mathbb{E} \left[(f(x) - \mathbb{E}[f(x)])^2 \right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2
\]

- For two random variables \(x \) and \(y \), the **covariance** is defined by

\[
\text{cov}(x, y) = \mathbb{E}_{x,y} \left\{ (x - \mathbb{E}[x]) (y - \mathbb{E}[y]) \right\} \\
= \mathbb{E}_{x,y} [xy] - \mathbb{E}[x] \mathbb{E}[y]
\]

- If \(x \) and \(y \) are vectors, the result is a **covariance matrix**

\[
\text{cov}(x, y) = \mathbb{E}_{x,y} \left\{ (x - \mathbb{E}[x])(y^T - \mathbb{E}[y^T]) \right\} \\
= \mathbb{E}_{x,y} [xy^T] - \mathbb{E}[x] \mathbb{E}[y^T]
\]
Bayes Decision Theory

“*The theory of inverse probability is founded upon an error, and must be wholly rejected.*”

R.A. Fisher, 1925

Thomas Bayes, 1701-1761
Bayes Decision Theory

- Example: handwritten character recognition

- Goal:
 - Classify a new letter such that the probability of misclassification is minimized.
Bayes Decision Theory

• Concept 1: **Priors** (a priori probabilities)
 - What we can tell about the probability *before seeing the data*.
 - Example:

 \[
 \begin{align*}
 a & a b a b a a b a b a b a a b a \\
 b & a a a a b a a b a a b a a b a b a b a b a
 \end{align*}
 \]

 \[
 C_1 = a \\
 C_2 = b
 \]

 \[
 p(C_1) = 0.75 \\
 p(C_2) = 0.25
 \]

• In general: \(\sum_k p(C_k) = 1 \)

Slide credit: Bernt Schiele
Bayes Decision Theory

- **Concept 2: Conditional probabilities**
 - Let x be a feature vector.
 - x measures/describes certain properties of the input.
 - E.g. number of black pixels, aspect ratio, ...
 - $p(x|C_k)$ describes its **likelihood** for class C_k.

\[
p(x|C_k)
\]
Bayes Decision Theory

- **Example:**

- **Question:**
 - Which class?
 - Since \(p(x|b) \) is much smaller than \(p(x|a) \), the decision should be ‘a’ here.
Bayes Decision Theory

- Example:

- Question:
 - Which class?
 - Since $p(x|a)$ is much smaller than $p(x|b)$, the decision should be ‘b’ here.
Bayes Decision Theory

• Example:

\[p(x|a) \quad \text{and} \quad p(x|b) \]

\[x = 20 \]

• Question:

- Which class?
- Remember that \(p(a) = 0.75 \) and \(p(b) = 0.25 \)...
- I.e., the decision should be again ‘a’.
- \(\Rightarrow \) How can we formalize this?
Bayes Decision Theory

• **Concept 3: Posterior probabilities**

 We are typically interested in the *a posteriori* probability, i.e. the probability of class C_k given the measurement vector x.

• **Bayes’ Theorem:**

$$p(C_k | x) = \frac{p(x | C_k) p(C_k)}{p(x)} = \frac{p(x | C_k) p(C_k)}{\sum_{i} p(x | C_i) p(C_i)}$$

• **Interpretation**

$$Posterior = \frac{Likelihood \times Prior}{Normalization \text{ Factor}}$$
Bayes Decision Theory

\[p(x|a) \]
\[p(x|b) \]

Likelihood

\[p(x|a) \cdot p(a) \]
\[p(x|b) \cdot p(b) \]

Likelihood \times Prior

Decision boundary

\[p(a|x) \]
\[p(b|x) \]

Posterior = \[\frac{\text{Likelihood} \times \text{Prior}}{\text{NormalizationFactor}} \]
Bayesian Decision Theory

- **Goal:** Minimize the probability of a misclassification

\[
p(\text{mistake}) = p(x \in R_1, C_2) + p(x \in R_2, C_1) \\
= \int_{R_1} p(x, C_2) \, dx + \int_{R_2} p(x, C_1) \, dx. \\
= \int_{R_1} p(C_2|x)p(x) \, dx + \int_{R_2} p(C_1|x)p(x) \, dx
\]

The green and blue regions stay constant.

Only the size of the red region varies!

Image source: C.M. Bishop, 2006
Bayes Decision Theory

- Optimal decision rule
 - Decide for C_1 if
 \[p(C_1 | x) > p(C_2 | x) \]
 - This is equivalent to
 \[p(x | C_1) p(C_1) > p(x | C_2) p(C_2) \]
 - Which is again equivalent to (Likelihood-Ratio test)
 \[\frac{p(x | C_1)}{p(x | C_2)} > \frac{p(C_2)}{p(C_1)} \]

Decision threshold θ

Slide credit: Bernt Schiele
Generalization to More Than 2 Classes

- Decide for class k whenever it has the greatest posterior probability of all classes:

$$p(C_k|x) > p(C_j|x) \quad \forall j \neq k$$

$$p(x|C_k)p(C_k) > p(x|C_j)p(C_j) \quad \forall j \neq k$$

- Likelihood-ratio test

$$\frac{p(x|C_k)}{p(x|C_j)} > \frac{p(C_j)}{p(C_k)} \quad \forall j \neq k$$
Classifying with Loss Functions

• Generalization to decisions with a **loss function**
 - Differentiate between the possible decisions and the possible true classes.
 - Example: medical diagnosis
 - Decisions: *sick* or *healthy* (or: *further examination necessary*)
 - Classes: patient is *sick* or *healthy*
 - The cost may be asymmetric:

\[
loss(\text{decision} = \text{healthy}|\text{patient} = \text{sick}) \gg
loss(\text{decision} = \text{sick}|\text{patient} = \text{healthy})
\]
Classifying with Loss Functions

- In general, we can formalize this by introducing a loss matrix L_{kj}

\[
L_{kj} = \text{loss for decision } C_j \text{ if truth is } C_k.
\]

- Example: cancer diagnosis

\[
L_{\text{cancer diagnosis}} = \begin{pmatrix}
\text{cancer} & \text{normal} \\
0 & 1000 \\
1 & 0
\end{pmatrix}
\]
Classifying with Loss Functions

- Loss functions may be different for different actors.

- Example:

 \[L_{stocktrader} (subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0 \\ 0 & 0 \end{pmatrix} \]

 \[L_{bank} (subprime) = \begin{pmatrix} -\frac{1}{2}c_{gain} & 0 \\ 0 & 0 \end{pmatrix} \]

 \[\Rightarrow \text{Different loss functions may lead to different Bayes optimal strategies.} \]
Minimizing the Expected Loss

- Optimal solution is the one that minimizes the loss.
 - But: loss function depends on the true class, which is unknown.

- Solution: Minimize the expected loss

\[\mathbb{E}[L] = \sum_k \sum_j \int_{R_j} L_{kj} p(x, C_k) \, dx \]

- This can be done by choosing the regions \(R_j \) such that

\[\mathbb{E}[L] = \sum_k L_{kj} \hat{p}(C_k|x) \]

which is easy to do once we know the posterior class probabilities \(\hat{p}(C_k|x) \).
Minimizing the Expected Loss

• Example:
 - 2 Classes: C_1, C_2
 - 2 Decision: α_1, α_2
 - Loss function: $L(\alpha_j | C_k) = L_{kj}$

• Expected loss (= risk R) for the two decisions:
 $$\mathbb{E}_{\alpha_1}[L] = R(\alpha_1 | x) = L_{11}p(C_1 | x) + L_{21}p(C_2 | x)$$
 $$\mathbb{E}_{\alpha_2}[L] = R(\alpha_2 | x) = L_{12}p(C_1 | x) + L_{22}p(C_2 | x)$$

• Goal: Decide such that expected loss is minimized
 - I.e. decide α_1 if $R(\alpha_2 | x) > R(\alpha_1 | x)$
Minimizing the Expected Loss

\[R(\alpha_2|x) > R(\alpha_1|x) \]
\[L_{12}p(C_1|x) + L_{22}p(C_2|x) > L_{11}p(C_1|x) + L_{21}p(C_2|x) \]
\[(L_{12} - L_{11})p(C_1|x) > (L_{21} - L_{22})p(C_2|x) \]
\[\frac{(L_{12} - L_{11})}{(L_{21} - L_{22})} > \frac{p(C_2|x)}{p(C_1|x)} = \frac{p(x|C_2)p(C_2)}{p(x|C_1)p(C_1)} \]
\[\frac{p(x|C_1)}{p(x|C_2)} > \frac{(L_{21} - L_{22})p(C_2)}{(L_{12} - L_{11})p(C_1)} \]

⇒ Adapted decision rule taking into account the loss.
The Reject Option

Classification errors arise from regions where the largest posterior probability $p(C_k|x)$ is significantly less than 1.

- These are the regions where we are relatively uncertain about class membership.
- For some applications, it may be better to reject the automatic decision entirely in such a case and e.g. consult a human expert.
Discriminant Functions

- Formulate classification in terms of comparisons
 - Discriminant functions
 \[y_1(x), \ldots, y_K(x) \]
 - Classify \(x \) as class \(C_k \) if
 \[y_k(x) > y_j(x) \quad \forall j \neq k \]

- Examples (Bayes Decision Theory)
 \[y_k(x) = p(C_k|x) \]
 \[y_k(x) = p(x|C_k)p(C_k) \]
 \[y_k(x) = \log p(x|C_k) + \log p(C_k) \]

Slide credit: Bernt Schiele
Different Views on the Decision Problem

• \(y_k(x) \propto p(x|C_k)p(C_k) \)
 - First determine the class-conditional densities for each class individually and separately infer the prior class probabilities.
 - Then use Bayes’ theorem to determine class membership.
 ⇒ Generative methods

• \(y_k(x) = p(C_k|x) \)
 - First solve the inference problem of determining the posterior class probabilities.
 - Then use decision theory to assign each new \(x \) to its class.
 ⇒ Discriminative methods

• Alternative
 - Directly find a discriminant function \(y_k(x) \) which maps each input \(x \) directly onto a class label.
Next Lectures...

- Ways how to estimate the probability densities $p(x|C_k)$
 - Non-parametric methods
 - Histograms
 - k-Nearest Neighbor
 - Kernel Density Estimation
 - Parametric methods
 - Gaussian distribution
 - Mixtures of Gaussians

- Discriminant functions
 - Linear discriminants
 - Support vector machines

⇒ Next lectures...
References and Further Reading

• More information, including a short review of Probability theory and a good introduction in Bayes Decision Theory can be found in Chapters 1.1, 1.2 and 1.5 of

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006