Computer Vision II - Lecture 14

Articulated Tracking II

10.07.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Outline of This Lecture

- Single-Object Tracking
- Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters
- Multi-Object Tracking
 - Data association
 - MHT, (JPDAF, MCMCDA)
 - Network flow optimization
- Articulated Tracking
 - GP body pose estimation
 - (Model-based tracking, AAMs)
 - Pictorial Structures

Topics of This Lecture

- Articulated Tracking
 - Motivation
 - Classes of Approaches
- Body Pose Estimation as High-Dimensional Regression
 - Representations
 - Training data generation
 - Latent variable space
 - Learning a mapping between pose and appearance
- Review: Gaussian Processes
 - Formulation
 - GP Prediction
 - Algorithm
- Applications
 - Articulated Tracking under Egomotion

Basic Classes of Approaches

- Global methods
 - Entire body configuration is treated as a point in some high-dimensional space.
 - Observations are also global feature vectors.
 - View of pose estimation as a high-dimensional regression problem.
 - Often in a subspace of “typical” motions...
- Part-based methods
 - Body configuration is modeled as an assembly of movable parts with kinematic constraints.
 - Local search for part configurations that provide a good explanation for the observed appearance under the kinematic constraints.
 - View of pose estimation as probabilistic inference in a dynamic Graphical Model.

Recap: Advantage of Silhouette Data

- Synthetic training data generation possible!
 - Create sequences of „Pose + Silhouette” pairs
 - Poses recorded with Mocap, used to animate 3D model
 - Silhouette via 3D rendering pipeline

Recap: Latent Variable Models

- Joint angle pose space is huge!
 - Only a small portion contains valid body poses.
 - Restrict estimation to the subspace of valid poses for the task
 - Latent variable models: PCA, FA, GPLVM, etc.
Recap: Articulated Motion in Latent Space

- Regression from latent space to:
 - Pose: \(p(\text{pose} \mid z) \)
 - Silhouette: \(p(\text{silhouette} \mid z) \)
- Regressors need to be learned from training data.

Recap: Learning a Generative Mapping

- Body Pose
 - Learn dim. red. (LLE)
 - X: Body Pose (high dim.)
 - Project pose
 - Y: Appearance Descriptor (low dim.)
- Appearance

Recap: Gaussian Process Regression

- "Regular" regression: \(y = f(x) \)
- GP regression: \(p(y(x)) \sim \mathcal{N}(\mu(x), \sigma(x)) \)

Recap: GP Prediction w/ Noisy Observations

- Calculation of posterior:
 - Corresponds to conditioning the joint Gaussian prior distribution on the observations:
 \[
 f_0 | X, X_0, t \sim \mathcal{N}(\hat{f}_0, \text{cov}(\hat{f}_0))
 \]
 - With:
 \[
 \hat{f}_0 = K(X_0, X) (K(X, X) + \sigma_f^2\mathbf{I})^{-1} t
 \]
 \[
 \text{cov}(\hat{f}_0) = K(X_0, X) - K(X_0, X) (K(X, X) + \sigma_f^2\mathbf{I})^{-1} K(X, X_0)
 \]
 - This is the key result that defines Gaussian process regression!

Recap: Articulated Multi-Person Tracking

- Idea: Only perform articulated tracking where it’s easy!
- Multi-person tracking:
 - Solves hard data association problem
- Articulated tracking:
 - Only on individual "tracklets" between occlusions
 - GP regression on full-body pose

Topics of This Lecture

- Pictorial Structures
 - Model components
 - Prior
 - Likelihood Model
- Recap: Inference
 - Sum-Product algorithm
 - Max-Sum algorithm
- Efficient Inference in Pictorial Structures
 - Generalized Distance Transform
 - Effect on Computation
- Results
Today: Pictorial Structures

- Pose estimation as inference in a graphical model
 - [Fischler & Elschlager, 1973; Felzenszwalb & Huttenlocher, 00]

Pictorial Structures

- Each body part one variable node
 - Torso, head, etc. (11 total)
- Each variable represented as tuple
 - E.g. $y_{torso} = (x, y, \mu, s)$ with
 - x rotation of the part
 - s scale
- Discretize label space y into L states
 - E.g., size of L for $y = (x, y, \mu, s)$
 - $L = 125 \times 125 \times 8 \times 4 = 500\,000$
 - Efficient search needed to make this feasible!

Recap: Factor Graphs

- Joint probability
 - Can be expressed as product of factors: $p(x) = \frac{1}{Z} \prod f_i(x_i)$
 - Factor graphs make this explicit through separate factor nodes.
- Converting a directed polytree
 - Conversion to undirected tree creates loops due to moralization!
 - Conversion to a factor graph again results in a tree!

Two Model Components

- Prior $p(L)$
 - Models kinematic dependencies between body parts
 - Tree-structured prior (constraints b/w body parts) lead to efficient inference
 - Generalized distance transform provide additional efficiency
- Likelihood of body parts $p(E | L)$
 - Models possible appearances of body parts
 - Substantial improvements in recent years in appearance modeling and detection
- Finding body parts = Pose estimation
Human Body Pose Models - Prior $p(L)$
- E.g., [Felzenszwalb & Huttenlocher, IJCV'05]
- E.g., [Andriluka et al., IJCV'12]

Human Body Pose Models - Prior $p(L)$
- E.g., [Felzenszwalb & Huttenlocher, IJCV'05]
- E.g., [Andriluka et al., IJCV'12]

Kinematic Tree Prior
- Notation
 - (from [Andriluka et al., IJCV'12])
 - Body configuration $L = \{l_0, l_1, \ldots, l_N\}$
 - Each body part: $l_i = (x_i, y_i, \theta_i, s_i)$
- Prior
 - $p(L) = p(l_0) \prod_{(i,j) \in G} p(l_i | l_j)$
 - with $p(l_0)$ assumed uniform
 - with $p(l_i | l_j)$ modeled using a Gaussian

Pictorial Structures
- Potentials (= energies = factors)
 - Unaries for each body part (torso, head, ...)
 - Pairwise between connected body parts
- Body pose estimation
 - Find most likely part location \Rightarrow Sum-product algorithm (marginals)
 - Find the best overall configuration \Rightarrow Max-sum algorithm (MAP estimate)

Kinematic Tree Prior
- Gaussian assumption for $p(l_i | l_j)$
 - This may seem like a significant limitation.
 - E.g., distribution of forearm configuration given the upper arm is semi-circular, rather than Gaussian!
- Solution
 - Transform part configuration l_i into coordinate system of the joint, where the distribution is captured well by a Gaussian:
 $$ T_{ji}(l_i) = \begin{bmatrix} x_i + s_i d_{ji}^x \cos \theta_i - s_i d_{ji}^y \sin \theta_i \\ y_i + s_i d_{ji}^y \sin \theta_i + s_i d_{ji}^x \cos \theta_i \\ \theta_i \\ s_i \end{bmatrix} $$
 - with $d_{ji}^x = \|d_{ji}\|_x$ position of the joint between parts i and j, represented in the coordinate system of part j.
Pictorial Structures: Model Components

- Body is represented as flexible combination of parts
 - posterior over body poses
 \[p(L|E) \propto p(E|L)p(L) \]

Likelihood Model

- Many variants have been proposed over the years...
 - [Felzenszwalb, IJCV'05]
 - Modeled using rectangular parts based on \(f_g/b_g\) probabilities
 - \(N_1\): #fg pixels inside rectangle
 - \(A_1\): size of rectangle
 - \(N_2\): #fg pixels inside border
 - \(A_2\): size of border area
 - \(t\): #pixels in image
 - Part likelihood
 \[p(E|l) = q_1^{N_1} (1 - q_1^{A_1-N_1}) q_2^{N_2} (1 - q_2^{A_2-N_2}) |0.5^{t-A_1-A_2} | \]

- Assumption
 - Evidence (image features) for each part independent of all other parts
 \[p(E|L) = \prod_{i=1}^{N} p(E|l_i) \]

- The assumption is clearly not correct, but
 - Allows efficient computation
 - Works rather well in practice
 - Training data for different body parts should cover “all” appearances
Recap: Sum-Product Algorithm

- **Objectives**
 - Efficient, exact inference algorithm for finding marginals.

- **Procedure**
 - Pick an arbitrary node as root.
 - Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
 - Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
 - Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

\[
p(x) \propto \prod_{x} \mu_{f_{j} \rightarrow x}(x)
\]

- **Computational effort**
 - Total number of messages \(= 2 \cdot \text{number of graph edges} \).

Recap: Max-Sum Algorithm

- **Objective**
 - An efficient algorithm for finding

\[
p(x_{\text{max}}) = \max \, p(x)
\]

- **Key ideas**
 - We are interested in the maximum value of the joint distribution \(p(x^{\text{max}})\).
 - For numerical reasons, use the logarithm.
 - Maximize the sum (of log-probabilities).
Recap: Max-Sum Algorithm

- Initialization (leaf nodes)
 \[\mu_{n-1}(x) = 0 \quad \mu_{n-1}(x) = \ln f(x) \]

- Recursion
 - Messages
 \[\mu_{n-1}(x) = \max_{v} \ln f(x, x_1, \ldots, x_n) + \sum_{u \in \text{neighbors}(v)} \mu_{u-n}(x_u) \]
 \[\mu_{n-1}(x) = \sum_{v \in \text{children}(n)} \mu_{f_n}(x) \]
 - For each node, keep a record of which values of the variables gave rise to the maximum state:
 \[\phi(x) = \arg \max_{H} \ln f(x, x_1, \ldots, x_n) + \sum_{u \in \text{neighbors}(v)} \mu_{u-n}(x_u) \]

Recap: Max-Sum Algorithm

- Termination (root node)
 - Score of maximal configuration
 \[p_{\text{max}} = \max_x \sum_{v \in \text{children}(n)} \mu_{f_n}(x) \]
 - Value of root node variable giving rise to that maximum
 \[x_{\text{max}} = \arg \max_x \sum_{v \in \text{children}(n)} \mu_{f_n}(x) \]
 - Back-track to get the remaining variable values
 \[x_{\text{max}}^{\text{root}} = \phi(x_{\text{max}}) \]

Topics of This Lecture

- Pictorial Structures
 - Model components
 - Prior
 - Likelihood Model
- Recap: Inference
 - Sum-Product algorithm
 - Max-Sum algorithm
- Efficient Inference in Pictorial Structures
 - Generalized Distance Transform
 - Effect on Computation
- Results

Efficient Inference

- Best location given by MAP
 \[\max_L p(L|E) = \max_L \sum_{y \in Y} p(y|L) p(e|y) \]
 \[= \min_{y \in Y} \sum_{e \in E} \ln p(y|L) - \ln p(e|y) \]
 - Consider case of 2 parts
 \[\min_{l_1, l_2} (\min x \ln p(l_1|l_2) - \ln p(e_1|l_1) - \ln p(l_1|l_2)) \]
 - Rename things
 \[\min_{l_1, l_2} (m_1(l_1) + m_2(l_2) + d(l_1, l_2)) \]
 - Assume \(d \) to have quadratic form
 \[d(l_1, l_2) = ||l_1 - T(l_2)||^2 \]
 - Then
 \[\min_{l_1} (m_0(l_1) + m_1(l_1) + d(l_1, l_2)) \]
 \[= \min_{l_1} (m_0(l_1) + \min_{l_2} (m_1(l_2) + d(l_1, l_2))) \]
 - with the second term a generalized distance transform (gDT).
 - Algorithms exist to compute gDT efficiently.
 - Thus
 \[\min_{l_1} (m_0(l_1) + dT_{l_2}(T(l_2))) \]
 - Finding the best part configuration can be done sequentially, rather than simultaneously!

Distance Transform

- Given points \(p \in P \) on a grid (e.g., image) \(G \)
 - Distance Transform associates to each location \(x \in G \) the distance to the nearest point \(p \in P \)
 \[DT_p(x) = \min_{p \in P} \{d(x, p)\} \]
 - or equivalent
 \[DT_p(x) = \min_{q \in G} \{d(x, q) + 1(q)\} \]
 \[1(q) = \begin{cases} 0 & \text{if } q \in P \\ \infty & \text{otherwise} \end{cases} \]
 - Example
 \[d(x, q) = |x - q| \]
 \[DT_p(x) = \min_{q \in G} \{|x - q| + 1(q)\} \]

Efficient Transform
Generalized Distance Transform

- Replace binary function \(1(q) \) with general function \(f(q) \)
 \[
 DT_f(x) = \min_{q \in \mathbb{Z}^2} \{ d(x, q) + f(q) \}
 \]
 - We can assign "soft membership of all grid elements to \(P \).
 - \(f(q) \) is sampled on the entire grid \(G \).

- In our case
 - \(f \) corresponds to \(m_1 \).
 - Distance corresponds to \(d(l_1, l_0) = ||l_1 - T(l_0)||^2 \)
 \[
 DT_{m_1}(T(l_0)) = \min_{l_1} \{ m_1(l_1) + d(l_1, l_0) \}
 \]

Example: Part Model of Motorbikes

- Model
 - 2 parts (use both wheels), simple translation between them given by \((x, y)\) position
 1. Part unaries (log prob) \(-m_0(l_0)\) and \(m_0(l)\)
 2. Distance transform of \(m_1(l_1) \)
 3. Simply find minimum of sum
 \[
 \min_{l_0} (m_0(l_0) + DT_{m_1}(T(l_0)))
 \]

Topics of This Lecture

- Pictorial Structures
 - Model components
 - Prior
 - Likelihood Model
- Recap: Inference
 - Sum-Product algorithm
 - Max-Sum algorithm
- Efficient Inference in Pictorial Structures
 - Generalized Distance Transform
 - Effect on Computation
- Results

Results

- Tracking and interpreting detailed body motion.

References and Further Reading

- Pictorial Structures
- Human Body Pose Estimation with Pictorial Structures