Outline of This Lecture

• Single-Object Tracking

• Bayesian Filtering
 - Kalman Filters, EKF
 - Particle Filters

• Multi-Object Tracking
 - Data association
 - MHT, (JPDAF, MCMCDA)
 - Network flow optimization

• Articulated Tracking
 - GP body pose estimation
 - (Model-based tracking, AAMs)
 - Pictorial Structures
Recap: Linear Assignment Formulation

- Form a matrix of pairwise similarity scores
- Example: Similarity based on motion prediction
 - Predict motion for each trajectory and assign scores for each measurement based on inverse (Mahalanobis) distance, such that closer measurements get higher scores.
 - Choose at most one match in each row and column to maximize sum of scores
Recap: Linear Assignment Problem

• **Formal definition**

 \[
 \text{Maximize} \quad \sum_{i=1}^{N} \sum_{j=1}^{M} w_{ij} z_{ij}
 \]

 subject to

 \[
 \sum_{j=1}^{M} z_{ij} = 1; \quad i = 1, 2, \ldots, N \\
 \sum_{i=1}^{N} z_{ij} = 1; \quad j = 1, 2, \ldots, M \\
 z_{ij} \in \{0, 1\}
 \]

 Those constraints ensure that \(Z \) is a permutation matrix.

 The permutation matrix constraint ensures that we can only match up one object from each row and column.

 Note: Alternatively, we can minimize cost rather than maximizing weights.

\[
\operatorname*{arg\,min}_{z_{ij}} \sum_{i=1}^{N} \sum_{j=1}^{M} c_{ij} z_{ij}
\]
Recap: Optimal Solution

- **Greedy Algorithm**
 - Easy to program, quick to run, and yields “pretty good” solutions in practice.
 - But it often does not yield the optimal solution

- **Hungarian Algorithm**
 - There is an algorithm called Kuhn-Munkres or “Hungarian” algorithm specifically developed to efficiently solve the linear assignment problem.
 - Reduces assignment problem to bipartite graph matching.
 - When starting from an $N \times N$ matrix, it runs in $O(N^3)$.
 - ⇒ If you need LAP, you should use it.
Recap: Min-Cost Flow

- Conversion into flow graph
 - Transform weights into costs: \(c_{ij} = \alpha - w_{ij} \)
 - Add source/sink nodes with 0 cost.
 - Directed edges with a capacity of 1.

Slide credit: Robert Collins
Recap: Min-Cost Flow

- Conversion into flow graph
 - Pump N units of flow from source to sink.
 - Internal nodes pass on flow ($\sum \text{flow in} = \sum \text{flow out}$).
 - Find the optimal paths along which to ship the flow.
Recap: Min-Cost Flow

- Conversion into flow graph
 - Pump N units of flow from source to sink.
 - Internal nodes pass on flow (\sum flow in = \sum flow out).
 \Rightarrow Find the optimal paths along which to ship the flow.
Recap: Using Network Flow for Tracking

• Complication 1

 - Tracks can start later than frame1 (and end earlier than frame4)

 \Rightarrow Connect the source and sink nodes to all intermediate nodes.
Recap: Using Network Flow for Tracking

- Complication 2
 - Trivial solution: zero cost flow!
Recap: Network Flow Approach

Solution: Divide each detection into 2 nodes

image source: [Zhang, Li, Nevatia, CVPR’08]
Recap: Min-Cost Formulation

- **Objective Function**

\[
\mathcal{T}^* = \arg\min_{\mathcal{T}} \sum_i C_{in,i} f_{in,i} + \sum_i C_{i,\text{out}} f_{i,\text{out}} + \sum_{i,j} C_{i,j} f_{i,j} + \sum_i C_i f_i
\]

- **subject to**
 - Flow conservation at all nodes
 \[
f_{in,i} + \sum_j f_{j,i} = f_i = f_{out,i} + \sum_j f_{i,j} \quad \forall i
\]
 - Edge capacities
 \[
f_i \leq 1
\]
Topics of This Lecture

• Articulated Tracking
 ➢ Motivation
 ➢ Classes of Approaches

• Body Pose Estimation as High-Dimensional Regression
 ➢ Representations
 ➢ Training data generation
 ➢ Latent variable space
 ➢ Learning a mapping between pose and appearance

• Review: Gaussian Processes
 ➢ Formulation
 ➢ GP Prediction
 ➢ Algorithm

• Applications
 ➢ Articulated Tracking under Egomotion
Articulated Tracking

• Examples
 - Recover a person’s body articulation
 - Track facial expressions
 - Track detailed hand motion
 - ...

• Common properties
 - Detailed parameterization in terms of joint locations or joint angles
 - Two steps
 - Pose estimation (in single frame)
 - Tracking (using dynamics model)
 - Challenging problem
 - High-dimensional
 - Hitting the limits of sensor data
Basic Classes of Approaches

• Global methods
 - Entire body configuration is treated as a point in some high-dimensional space.
 - Observations are also global feature vectors.
 ⇒ View of pose estimation as a high-dimensional regression problem.
 ⇒ Often in a subspace of “typical” motions...

• Part-based methods
 - Body configuration is modeled as an assembly of movable parts with kinematic constraints.
 - Local search for part configurations that provide a good explanation for the observed appearance under the kinematic constraints.
 ⇒ View of pose estimation as probabilistic inference in a dynamic Graphical Model.
Why Is It Difficult?

- Challenges
 - Poor imaging, motion blur, occlusions, etc.
 - Difficult to extract sufficiently good figure-ground information
 - Mapping is generally multi-modal: an image observation can represent more than one pose!

Slide credit: Raquel Urtasun
Topics of This Lecture

• Articulated Tracking
 - Motivation
 - Classes of Approaches

• Body Pose Estimation as High-Dimensional Regression
 - Representations
 - Training data generation
 - Latent variable space
 - Learning a mapping between pose and appearance

• Review: Gaussian Processes
 - Formulation
 - GP Prediction
 - Algorithm

• Applications
 - Articulated Tracking under Egomotion
Body Representation

- The body can be approximated as a kinematic tree

- Parametrization via
 - Joint locations
 - Joint angles
 - Relative joint angles along kinematic chain
 - ...

- Example using in the following
 - 3D joint locations of 20 joints
 ⇒ 60-dimensional space
Image Representation

• Many possibilities...

• Popular choice: Silhouettes
 - Easy to extract using background modeling techniques.
 - Capture important information about body shape.
 ⇒ We will use them as an example for today’s lecture...
Another Advantage of Silhouette Data

- Synthetic training data generation possible!
 - Create sequences of „Pose + Silhouette“ pairs
 - Poses recorded with Mocap, used to animate 3D model
 - Silhouette via 3D rendering pipeline
Synthetic Training Data Generation

Varying body proportions

Different clothes models

Animate with MoCap data

Resulting synthetic training data (depth, body part labels, silhouette)

Image source: Umer Rafi
Synthetic Training Data Generation

Example training sequence
Learning a Mapping b/w Pose and Appearance

- **Appearance prediction**
 - Regression problem
 - High-dimensional data on both sides
 - Low-dim. representation needed for learning!

- **Training with Motion-capture stimuli**
 - Real dynamics from human actors
 - Synthesized silhouettes for training
 - Background subtraction for test

Latent Variable Models

- Joint angle pose space is huge!
 - Only a small portion contains valid body poses.
 - Restrict estimation to the subspace of valid poses for the task
 - Latent variable models: PCA, FA, GPLVM, etc.
Example: Subspace of Walking Motion

- Pose modeling in a subspace
 - Pose model has 60 (highly dependent) DoF
 - But gait is cyclic, can be represented by a 2D latent space
 - Capture the dependency by dimensionality reduction (PCA, FA, CCA, LLE, GPLVM, ...)

Image sources: S. Gammeter, T. Jaeggli
Articulated Motion in the Latent Space

- Regression from latent space to
 - Pose: $p(\text{pose} \mid z)$
 - Silhouette: $p(\text{silhouette} \mid z)$

- Regressors need to be learned from training data.

Slide adapted from Stefan Gammeter
Learning a Generative Mapping

Body Pose

\(X: \text{Body Pose (high dim.)}\) \rightarrow \text{Learn dim. red. (LLE)} \rightarrow \text{reconstruct pose} \rightarrow \(x: \text{Body Pose (low dim.)}\)

Appearance

\(Y: \text{Image (high dim.)}\) \rightarrow \text{projection (BPCA)} \rightarrow \(y: \text{Appearance Descriptor: (low dim.)}\)

Slide credit: Tobias Jaeggli
Example Results

- **Difficulties**
 - Changing viewpoints
 - Low resolution (50 px)
 - Compression artifacts
 - Disturbing objects (umbrella, bag)

Original video

Video sources: Hedvig Sidhenbladh, Tobias Jaeggli
Representing Multiple Activities

• Learn multiple models
 - One model per activity
 - Separate LLE embedding
 - Separate dynamics

• Learn transition function
 - Link the LLE spaces
 - Find similar pose pairs
 - Learn smooth transition

\[
p(x_t, a_t \mid x_{t-1}, a_{t-1}) \propto \begin{cases}
p_{\text{noswitch}} & \text{if } a_t = a_{t-1} \\
p_{\text{switch}} & \text{else}
\end{cases}
\]

\[
p_{\text{noswitch}}(x_t \mid x_{t-1})
\]

\[
p_{\text{switch}}(x_t \mid x_{t-1})
\]

walk

run

Slide credit: Tobias Jaeggli
Switching b/w Multiple Activities

- Activity switching
 - Low-res. traffic scene
 - Transition from Walking to Running
Topics of This Lecture

• Articulated Tracking
 ➢ Motivation
 ➢ Classes of Approaches

• Body Pose Estimation as High-Dimensional Regression
 ➢ Representations
 ➢ Training data generation
 ➢ Latent variable space
 ➢ Learning a mapping between pose and appearance

• Review: Gaussian Processes
 ➢ Formulation
 ➢ GP Prediction
 ➢ Algorithm

• Applications
 ➢ Articulated Tracking under Egomotion
Classification vs. Regression

In classification: \(y \in \{-1, 1\} \)

In regression: \(y \in \mathbb{R} \)
Gaussian Process Regression

• “Regular” regression: \(y = f(x) \)

\[\begin{align*}
\text{y} & \quad \text{x} \\
\text{y} & \quad \text{x}
\end{align*} \]

• GP regression: \(p(y|x) \sim \mathcal{N}(\mu(x), \sigma(x)) \)

\[\begin{align*}
\text{y} & \quad \text{x} \\
\text{y} & \quad \text{x}
\end{align*} \]

Slide credit: Stefan Gammeter
Gaussian Process Regression

• GP Regression
 - Very easy to apply
 - Automatic confidence estimate of the result
 - Well-suited for pose regression tasks

• In the following, I will give a quick intro to GPs
 - Focus on main concepts and results
 - A far more detailed discussion will be given in the Advanced Machine Learning lecture (next semester).
Gaussian Process

• Gaussian distribution
 - Probability distribution over scalars / vectors.

• Gaussian process (generalization of Gaussian distrib.)
 - Describes properties of functions.
 - Function: Think of a function as a long vector where each entry specifies the function value $f(x_i)$ at a particular point x_i.
 - Issue: How to deal with infinite number of points?
 - If you ask only for properties of the function at a finite number of points...
 - Then inference in Gaussian Process gives you the same answer if you ignore the infinitely many other points.

• Definition
 - A Gaussian process (GP) is a collection of random variables any finite number of which has a joint Gaussian distribution.
Gaussian Process

- Example prior over functions $p(f)$
 - Represents our prior belief about functions before seeing any data.
 - Although specific functions don’t have mean of zero, the mean of $f(x)$ values for any fixed x is zero (here).
 - Favors smooth functions
 - I.e. functions cannot vary too rapidly
 - Smoothness is induced by the covariance function of the Gaussian Process.

- Learning in Gaussian processes
 - Is mainly defined by finding suitable properties of the covariance function.
Gaussian Process

- A Gaussian process is completely defined by
 - Mean function $m(x)$ and
 $$m(x) = \mathbb{E}[f(x)]$$
 - Covariance function $k(x, x')$
 $$k(x, x') = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))]$$
 - We write the Gaussian process (GP)
 $$f(x) \sim \mathcal{GP}(m(x), k(x, x'))$$
Gaussian Process: Squared Exponential

• Typical covariance function
 - Squared exponential (SE)
 - Covariance function specifies the covariance between pairs of random variables
 \[
 \text{cov}[f(x_p), f(x_q)] = k(x_p, x_q) = \exp \left\{ -\frac{1}{2} |x_p - x_q|^2 \right\}
 \]

• Remarks
 - Covariance between the outputs is written as a function between the inputs.
 - The squared exponential covariance function corresponds to a Bayesian linear regression model with an infinite number of basis functions.
 - For any positive definite covariance function \(k(\ldots) \), there exists a (possibly infinite) expansion in terms of basis functions.
Gaussian Process: Prior over Functions

- Distribution over functions:
 - Specification of covariance function implies distribution over functions.
 - I.e. we can draw samples from the distribution of functions evaluated at a (finite) number of points.

- Procedure
 - We choose a number of input points X_*
 - We write the corresponding covariance matrix (e.g. using SE) element-wise:
 $K(X_*, X_*)$
 - Then we generate a random Gaussian vector with this covariance matrix:
 $f_* \sim \mathcal{N}(0, K(X_*, X_*))$

Example of 3 functions sampled

Image source: Rasmussen & Williams, 2006
GP Prediction with Noisy Observations

- **Assume we have a set of observations:**
 \[
 \{(x_n, f_n) \mid n = 1, \ldots, N\}
 \]
 with noise \(\sigma_n \)

- **Joint distribution** of the training outputs \(f \) and test outputs \(f_* \) **according to the prior:**
 \[
 \begin{bmatrix}
 t \\
 f_*
 \end{bmatrix}
 \sim \mathcal{N}
 \left(
 \begin{bmatrix}
 0 \\
 0
 \end{bmatrix},
 \begin{bmatrix}
 K(X, X) + \sigma^2_n I \\
 K(X_*, X) & K(X_*, X_*)
 \end{bmatrix}
 \right)
 \]

 - \(K(X, X_*) \) contains covariances for all pairs of training and test points.

- **To get the posterior** (after including the observations)
 - We need to restrict the above prior to contain only those functions which agree with the observed values.
 - Think of generating functions from the prior and rejecting those that disagree with the observations (obviously prohibitive).
Result: Prediction with Noisy Observations

• Calculation of posterior:
 - Corresponds to conditioning the joint Gaussian prior distribution on the observations:
 \[f_\star | X_\star, X, t \sim \mathcal{N}(\bar{f}_\star, \text{cov}[f_\star]) \quad \bar{f}_\star = \mathbb{E}[f_\star | X, X_\star, t] \]

 with:
 \[
 \bar{f}_\star = K(X_\star, X) \left(K(X, X) + \sigma_n^2 I \right)^{-1} t \\
 \text{cov}[f_\star] = K(X_\star, X_\star) - K(X_\star, X) \left(K(X, X) + \sigma_n^2 I \right)^{-1} K(X, X_\star)
 \]

⇒ This is the key result that defines Gaussian process regression!
 - The predictive distribution is a Gaussian whose mean and variance depend on the test points \(X_\star \) and on the kernel \(k(x, x') \), evaluated on the training data \(X \).
GP Regression Algorithm

- Very simple algorithm

\[
\begin{align*}
\text{input: } & \ X \text{ (inputs), } y \text{ (targets), } k \text{ (covariance function), } \sigma_n^2 \text{ (noise level), } \ \ x_* \text{ (test input)} \\
2. \ L & := \text{cholesky}(K + \sigma_n^2 I) \\
\alpha & := L^\top(L\backslash y) \\
4. \ \bar{f}_* & := k_*^\top \alpha \\
\nu & := L\backslash k_* \\
6. \ \nabla[f_*] & := k(x_*, x_*) - \nu^\top \nu \\
\log p(y|X) & := -\frac{1}{2} y^\top \alpha - \frac{1}{2} \sum_i \log L_{ii} - \frac{n}{2} \log 2\pi \\
8. \ \text{return: } & \bar{f}_* \text{ (mean), } \nabla[f_*] \text{ (variance), } \log p(y|X) \text{ (log marginal likelihood)}
\end{align*}
\]

- Based on the following equations (Matrix inv. \leftrightarrow Cholesky fact.)

\[
\begin{align*}
\bar{f}_* & = k_*^T \left(K + \sigma_n^2 I \right)^{-1} t \\
\text{cov}[f_*] & = k(x_*, x_*) - k_*^T \left(K + \sigma_n^2 I \right)^{-1} k_* \\
\log p(t|X) & = -\frac{1}{2} t^T \left(K + \sigma_n^2 I \right)^{-1} t - \frac{1}{2} \log |K + \sigma_n^2 I| - \frac{N}{2} \log 2\pi
\end{align*}
\]
Computational Complexity

• Complexity of GP model
 ➢ Training effort: $O(N^3)$ through matrix inversion
 ➢ Test effort: $O(N^2)$ through vector-matrix multiplication

• Complexity of basis function model
 ➢ Training effort: $O(M^3)$
 ➢ Test effort: $O(M^2)$

• Discussion
 ➢ Exact GP methods become infeasible for large training sets.
 \Rightarrow Need to use approximate techniques whenever #training examples > 2500-3000.

B. Leibe
Topics of This Lecture

• Articulated Tracking
 - Motivation
 - Classes of Approaches

• Body Pose Estimation as High-Dimensional Regression
 - Representations
 - Training data generation
 - Latent variable space
 - Learning a mapping between pose and appearance

• Review: Gaussian Processes
 - Formulation
 - GP Prediction
 - Algorithm

• Applications
 - Articulated Tracking under Egomotion
Articulated Multi-Person Tracking using GP

- **Idea:** Only perform articulated tracking where it’s easy!
- **Multi-person tracking**
 - Solves hard data association problem
- **Articulated tracking**
 - Only on individual “tracklets” between occlusions
 - GP regression on full-body pose

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]
Articulated Multi-Person Tracking

- Multi-Person tracking
 - Recovers trajectories and solves data association

- Articulated Tracking
 - Estimates detailed body pose for each tracked person

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]
Articulated Tracking under Egomotion

- Guided segmentation for each frame
 - No reliance on background modeling
 - Approach applicable to scenarios with moving camera
 - Feedback from body pose estimate to improve segmentation

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]
Summary: Articulated Tracking with Global Models

• **Pros:**
 - View as regression problem (pose ↔ appearance)
 - Lots of machine learning techniques available
 - Research focus on handling the ambiguities
 - Training on MoCap data possible
 - Accurate models for human dynamics

• **Cons:**
 - High-dimensional problem
 - Global model
 - Can handle only those articulations it has previously seen
 - Not robust against partial occlusion
 - Difficult to get good appearance representation
 - MoCap data ⇒ Can synthesize silhouettes, but not appearance
 - Restricted to background subtraction