Computer Vision II - Lecture 12

Multi-Object Tracking II

01.07.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de
Course Outline

• Single-Object Tracking
• Bayesian Filtering
 ➢ Kalman filters
 ➢ Particle filters
 ➢ Case studies
• Multi-Object Tracking
 ➢ Introduction
 ➢ MHT, JPDAF
 ➢ Network Flow Optimization
• Articulated Tracking
Topics of This Lecture

• Recap: Track-Splitting Filter
 - Motivation
 - Ambiguities

• Multi-Hypothesis Tracking (MHT)
 - Basic idea
 - Hypothesis Generation
 - Assignment
 - Measurement Likelihood
 - Practical considerations
Recap: Motion Correspondence Ambiguities

1. Predictions may not be supported by measurements
 - Have the objects ceased to exist, or are they simply occluded?

2. There may be unexpected measurements
 - Newly visible objects, or just noise?

3. More than one measurement may match a prediction
 - Which measurement is the correct one (what about the others)?

4. A measurement may match to multiple predictions
 - Which object shall the measurement be assigned to?
Let’s Formalize This

- **Multi-Object Tracking problem**
 - We represent a track by a state vector x, e.g.,
 \[x = [x, y, u_x, u_y]^T \]
 - As the track evolves, we denote its state by the time index k:
 \[x^{(k)} = [x^{(k)}, y^{(k)}, u_x^{(k)}, u_y^{(k)}]^T \]
 - At each time step, we get a set of observations (measurements)
 \[Y^{(k)} = \{ y_1^{(k)}, \ldots, y_{M_k}^{(k)} \} \]
 - We now need to make the data association between tracks
 \[\{ x_1^{(k)}, \ldots, x_{N_k}^{(k)} \} \text{ and observations } \{ y_1^{(k)}, \ldots, y_{M_k}^{(k)} \} : \]
 \[z_i^{(k)} = j \text{ iff } y_j^{(k)} \text{ is associated with } x_i^{(k)} \]

B. Leibe
Recap: Reducing Ambiguities

- **Gating**
 - Only consider measurements within a certain area around the predicted location.
 - Large gain in efficiency, since only a small region needs to be searched

- **Nearest-Neighbor Filter**
 - Among the candidates in the gating region, only take the one closest to the prediction x_p

 $$
 z_l^{(k)} = \arg \min_j (x_p^{(k)} - y_j^{(k)})^T (x_p^{(k)} - y_j^{(k)})
 $$
 - Better: the one most likely under a Gaussian prediction model

 $$
 z_l^{(k)} = \arg \max_j \mathcal{N}(y_j^{(k)}; x_p^{(k)}, \Sigma_p^{(k)})
 $$

 which is equivalent to taking the Mahalanobis distance

 $$
 z_l = \arg \min_j (x_p, l - y_j)^T \Sigma_{p,l}^{-1} (x_p, l - y_j)
 $$

B. Leibe
Recap: Track-Splitting Filter

• Idea
 - Instead of assigning the measurement that is currently closest, as in the NN algorithm, select the *sequence* of measurements that minimizes the *total* Mahalanobis distance over some interval!
 - Form a track tree for the different association decisions
 - Modified log-likelihood provides the merit of a particular node in the track tree.
 - Cost of calculating this is low, since most terms are needed anyway for the Kalman filter.

• Problem
 - The track tree grows exponentially, may generate a very large number of possible tracks that need to be maintained.
Recap: Pruning Strategies

- In order to keep this feasible, need to apply pruning
 - Deleting unlikely tracks
 - May be accomplished by comparing the modified log-likelihood \(\lambda(k) \), which has a \(\chi^2 \) distribution with \(kn_z \) degrees of freedom, with a threshold \(\alpha \) (set according to \(\chi^2 \) distribution tables).
 - Problem for long tracks: modified log-likelihood gets dominated by old terms and responds very slowly to new ones.
 \(\Rightarrow \) Use sliding window or exponential decay term.
 - Merging track nodes
 - If the state estimates of two track nodes are similar, merge them.
 - E.g., if both tracks validate identical subsequent measurements.
 - Only keeping the most likely \(N \) tracks
 - Rank tracks based on their modified log-likelihood.
Summary: Track-Splitting Filter

- **Properties**
 - Very old algorithm
 - Improvement over NN assignment.
 - Assignment decisions are delayed until more information is available.

- **Many problems remain**
 - Exponential complexity, heuristic pruning needed.
 - Merging of track nodes is necessary, because tracks may share measurements, which is physically unrealistic.
 - Would need to add exclusion constraints such that each measurement may only belong to a single track.
 - Impossible in this framework...
Topics of This Lecture

• Recap: Track-Splitting Filter
 ➢ Motivation
 ➢ Ambiguities

• Multi-Hypothesis Tracking (MHT)
 ➢ Basic idea
 ➢ Hypothesis Generation
 ➢ Assignment
 ➢ Measurement Likelihood
 ➢ Practical considerations
Multi-Hypothesis Tracking (MHT)

• Ideas
 - Again associate sequences of measurements.
 - Evaluate the probabilities of all association hypotheses.
 - For each sequence of measurements (a hypothesized track), a standard KF yields the state estimate and covariance.

• Differences to Track-Splitting Filter
 - Instead of forming a track tree, keep a set of hypotheses that generate child hypotheses based on the associations.
 - After each hypothesis generation step, merge and prune the current hypothesis set to keep the approach feasible.
 - Integrate track generation into the assignment process.

Target vs. Measurement Orientation

- **Target-oriented approaches**
 - Evaluate the probability that a measurement belongs to an established target.

- **Measurement-oriented approaches**
 - Evaluate the probability that an established target or a new target gave rise to a certain measurement sequence.
 - This makes it possible to include track initiation of new targets within the algorithmic framework.

- **MHT**
 - Measurement-oriented
 - Handles track initialization and termination
Challenge: Exponential Complexity

• Strategy
 - Generate all possible hypotheses and then depend on pruning these hypotheses to avoid the combinatorial explosion.
 ⇒ Exhaustive search
 - Tree data structures are used to keep this search efficient

• Commonly used pruning techniques
 - Clustering to reduce the combinatorial complexity
 - Pruning of low-probability hypotheses
 - N-scan pruning
 - Merging of similar hypotheses
MHT Outline

Hypotheses at time \(k-1 \)
\(\Omega^{k-1} \)

Delay

Hypotheses at time \(k \)
\(\Omega^k \)

Hypothesis Management (pruning, merging)

Hypothesis Generation

For Each Hypothesis \(\Theta_i^{k-1} \)
Generate Predictions

\(\hat{X}(k) \)
Predicted Features

Matching

Hypothesis Matrix

\(Y(k) \)
Observed Features

Feature Extraction

Raw Sensor Data

B. Leibe
Hypothesis Generation

• Formalization
 - Set of hypotheses at time k: \(\Omega^{(k)} = \left\{ \Omega_j^{(k)} \right\} \)
 - This set is obtained from \(\Omega^{(k-1)} \) and the latest set of measurements
 \[
 Y^{(k)} = \left\{ y_1^{(k)}, \ldots, y_{M_k}^{(k)} \right\}
 \]
 - The set \(\Omega^{(k)} \) is generated from \(\Omega^{(k-1)} \) by performing all feasible associations between the old hypotheses and the new measurements \(Y^{(k)} \).

• Feasible associations can be
 - A continuation of a previous track
 - A false alarm
 - A new target
Hypothesis Matrix

• Visualize feasible associations by a hypothesis matrix

\[\Theta = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \]

\[\begin{array}{c} y_1 \\ y_2 \\ y_3 \\ y_4 \end{array} \]

• Interpretation

 ➢ Columns represent tracked objects
 ➢ Rows represent measurements
 ➢ A non-zero element at matrix position \((i,j)\) denotes that measurement \(y_i\) is contained in the validation region of track \(x_j\).
 ➢ Extra column \(x_{fa}\) for association as *false alarm*.
 ➢ Extra column \(x_{nt}\) for association as *new track*.

B. Leibe
Assignments

• Turning feasible associations into assignments
 ➢ For each feasible association, we generate a new hypothesis.
 ➢ Let $\Omega_j^{(k)}$ be the j-th hypothesis at time k and $\Omega_{p(j)}^{(k-1)}$ be the parent hypothesis from which $\Omega_j^{(k)}$ was derived.
 ➢ Let $Z_j^{(k)}$ denote the set of assignments that gives rise to $\Omega_j^{(k)}$.
 ➢ Assignments are again best visualized in matrix form

<table>
<thead>
<tr>
<th>Z_j</th>
<th>x_1</th>
<th>x_2</th>
<th>x_{fa}</th>
<th>x_{nt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>y_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Assignments

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_{fa}</th>
<th>x_{nt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>y_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>y_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Impose constraints**
 - A measurement can originate from only one object.
 - \(\Rightarrow \) Any row has only a single non-zero value.
 - An object can have at most one associated measurement per time step.
 - \(\Rightarrow \) Any column has only a single non-zero value, except for x_{fa}, x_{nt}
Calculating Hypothesis Probabilities

- Probabilistic formulation
 - It is straightforward to enumerate all possible assignments.
 - However, we also need to calculate the probability of each child hypothesis.
 - This is done recursively:

\[
p(\Omega_{j}^{(k)}|\mathbf{Y}^{(k)}) = p(Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}|\mathbf{Y}^{(k)})
\]

Bayes
\[
= \eta p(\mathbf{Y}^{(k)}|Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}) p(Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)})
\]

\[
= \eta p(\mathbf{Y}^{(k)}|Z_{j}^{(k)}, \Omega_{p(j)}^{(k-1)}) p(Z_{j}^{(k)}|\Omega_{p(j)}^{(k-1)}) p(\Omega_{p(j)}^{(k-1)})
\]
Measurement Likelihood

- Use KF prediction
 - Assume that a measurement $y_i^{(k)}$ associated to a track x_j has a Gaussian pdf centered around the measurement prediction $\hat{x}_j^{(k)}$ with innovation covariance $\hat{\Sigma}_j^{(k)}$.
 - Further assume that the pdf of a measurement belonging to a new track or false alarm is uniform in the observation volume W (the sensor’s field-of-view) with probability W^{-1}.
 - Thus, the measurement likelihood can be expressed as

\[
p \left(Y^{(k)} \mid Z_j^{(k)}, \Omega_{p(j)}^{(k-1)} \right) = \prod_{i=1}^{M_k} \mathcal{N} \left(y_i^{(k)} ; \hat{x}_j, \hat{\Sigma}_j^{(k)} \right)^{\delta_i} W^{-(1-\delta_i)}
\]

\[
= W^{-(N_{fal}+N_{new})} \prod_{i=1}^{M_k} \mathcal{N} \left(y_i^{(k)} ; \hat{x}_j, \hat{\Sigma}_j^{(k)} \right)^{\delta_i}
\]

B. Leibe
Probability of an Assignment Set

\[p(Z_j^{(k)} | \Omega_{p(j)}^{(k-1)}) \]

- Composed of three terms
 1. Probability of the number of tracks \(N_{det}, N_{fal}, N_{new} \)
 - Assumption 1: \(N_{det} \) follows a binomial distribution

\[
p(N_{det} | \Omega_{p(j)}^{(k-1)}) = \binom{N}{N_{det}} p_{det}^{N_{det}} (1 - p_{det})^{(N-N_{det})}
\]

where \(N \) is the number of tracks in the parent hypothesis

- Assumption 2: \(N_{fal} \) and \(N_{new} \) both follow a Poisson distribution with expected number of events \(\lambda_{fal} W \) and \(\lambda_{new} W \)

\[
p(N_{det}, N_{fal}, N_{new} | \Omega_{p(j)}^{(k-1)}) = \binom{N}{N_{det}} p_{det}^{N_{det}} (1 - p_{det})^{(N-N_{det})} \cdot \mu(N_{fal}; \lambda_{fal} W) \cdot \mu(N_{new}; \lambda_{new} W)
\]
Probability of an Assignment Set

2. Probability of a specific assignment of measurements
 - Such that $M_k = N_{det} + N_{fal} + N_{new}$ holds.
 - This is determined as 1 over the number of combinations
 \[
 \binom{M_k}{N_{det}} \binom{M_k - N_{det}}{N_{fal}} \binom{M_k - N_{det} - N_{fal}}{N_{new}}
 \]

3. Probability of a specific assignment of tracks
 - Given that a track can be either detected or not detected.
 - This is determined as 1 over the number of assignments
 \[
 \frac{N!}{(N - N_{det})!} \binom{N - N_{det}}{N_{det}}
 \]
Measurement Likelihood

- Combining all the different parts
 - Nice property: many terms cancel out!
 - (Derivation left as exercise)

\[p \left(\Omega_j^{(k)} | Y^{(k)} \right) \] can be computed in a very simple form.

- This was the main contribution by Reid and it is one of the reasons why the approach is still popular.

- Practical issues
 - Exponential complexity remains
 - Heuristic pruning strategies must be applied to contain the growth of the hypothesis set.
 - E.g., dividing hypotheses into spatially disjoint clusters.
References and Further Reading

• A good tutorial on Data Association

• Reid’s original MHT paper