Background Modeling

22.04.2014

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de
leibe@vision.rwth-aachen.de

Announcements

• Course webpage
 http://www.vision.rwth-aachen.de/teaching/
 Slides will be made available on the webpage

• L2P electronic repository
 Exercises and supplementary materials will be posted on the L2P

• Please subscribe to the lecture on the Campus system!
 Important to get email announcements and L2P access!
 Bachelor students please also subscribe

Course Outline

• Single-Object Tracking
 ▪ Background modeling
 ▪ Template based tracking
 ▪ Color based tracking
 ▪ Contour based tracking
 ▪ Tracking by online classification
 ▪ Tracking-by-detection

• Bayesian Filtering

• Multi-Object Tracking

• Articulated Tracking

Topics of This Lecture

• Motivation: Background Modeling

• Simple Background Models
 ▪ Background Subtraction
 ▪ Frame Differencing

• Statistical Background Models
 ▪ Single Gaussian
 ▪ Mixture of Gaussians
 ▪ Kernel Density Estimation

• Practical Issues and Extensions
 ▪ Background model update
 ▪ False detection suppression
 ▪ Shadow suppression
 ▪ Applications

Motivation

• Goals
 ▪ Want to detect and track all kinds of objects in a wide variety of surveillance scenarios.
 ▪ Need a general algorithm that works for many scenarios.
 ▪ Video frames come in at 30Hz. There is not much time to process each image.
 ▪ Real-time algorithms need to be very simple.

• Assumptions
 ▪ The camera is static.
 ▪ Objects that move are important (people, vehicles, etc.).

• Basic Approach
 ▪ Maintain a model of the static background.
 ▪ Compare the current frame to this model to detect objects.

Image source: Tobias Jaeggli

Video source: Wolfgang Mehner

Slide adapted from Robert Collins
Background Modelling Results

![Background Modelling Results](image)

Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression

Simple Background Subtraction

- **Procedure**
 - Background model is a static image (without any objects).
 - Pixels are labeled based on thresholding the absolute intensity difference between current frame and background.

Background Subtraction Results

- **Observation**
 - Background subtraction does a reasonable job of extracting the object shape if the object intensity/color is sufficiently different from the background.
 - What are the limitations of this simple procedure?

Background Subtraction: Limitations

- **Outdated reference frame**
 - Objects that enter the scene and stop continue to be detected...
 - ...making it difficult to detect new objects that pass in front of them.
 - If part of the assumed static background starts moving...
 - ...both the object and its negative ghost (the revealed background) are detected.

- **Illumination changes**
 - Background subtraction sensitive to illumination changes and unimportant scene motion (e.g., tree branches swaying in the wind).

- **Global threshold**
 - A single, global threshold for the entire scene is often suboptimal.

 ⇒ **Need adaptive model with local decisions**
Simple Frame Differencing

- Other idea
 - Background model is replaced with the previous image.

Frame Differencing Observations

- Advantages
 - Frame differencing is very quick to adapt to changes in lighting or camera motion.
 - Objects that stop are no longer detected.
 - Objects that start up no longer leave behind ghosts.

- Limitations
 - Frame differencing only detects the leading and trailing edge of a uniformly colored object.
 - Very few pixels on the object are labeled.
 - Very hard to detect an object moving towards or away from the camera.

Differencing and Temporal Scale

- More general formulation
 - Define $D(N) = \| I(t) - I(t + N) \|$

- Effect of increasing the temporal scale
 - More complete object silhouette, but two copies of the object (one where it used to be, one where it is now).

Three-Frame Differencing

- Improved approach to handle this problem

Three-Frame Differencing

- Problem
 - Choice of good frame-rate for three-frame differencing depends on size and speed of object.

Adaptive Background Subtraction

- Current image is “blended” into the background model with α.

Adaptive Background Subtraction

• Properties
 - More responsive to changes in illumination and camera motion.
 - Small, fast-moving objects are well-segmented, but they leave behind short "trails" of pixels.
 - Objects that stop and ghosts left behind by objects that start both gradually fade into the background.
 - The centers of large, slow-moving objects start to fade into the background, too!
 - This can be fixed by decreasing the blend parameter α, but then it takes longer for ghost objects to disappear...

Discussion

• Background subtraction / Frame differencing
 - Very simple techniques, historically among the first.
 - Straightforward to implement, fast to test out.
 - We've seen some fixes for the most pressing problems.

• Remaining limitations
 - Rather heuristic approach.
 - Leads to relatively poor foreground/background decisions.
 - Optimal temporal scale still depends on object size and speed.
 - Global threshold is often suboptimal for parts of the image.
 - Very fiddly in practice, requires extensive parameter tuning.

• Let's try to come up with a better founded approach
 - Using a statistical model of background probability...

Gaussian Background Model

• Statistical model
 - Value of a pixel represents a measurement of the radiance of the first object intersected by the pixel's optical ray.
 - With a static background and static lighting, this value will be a constant affected by i.i.d. Gaussian noise.

• Idea
 - Model the background distribution of each pixel by a single Gaussian centered at the mean pixel value:
 \[N(x|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right\} \]
 - Test if a newly observed pixel value has a high likelihood under this Gaussian model.
 - Automatic estimation of a sensitivity threshold for each pixel.

Comparisons

BG Subtraction Frame Differencing Adaptive BG Subtract.

Topics of This Lecture

• Motivation: Background Modeling
• Simple Background Models
 - Background Subtraction
 - Frame Differencing
• Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
• Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression

Recap: Maximum Likelihood Approach

• Computation of the likelihood
 - Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \ldots, x_n\}$ are independent
 \[L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta) \]
 - Log-likelihood
 \[E(\theta) = -\log L(\theta) = -\sum_{n=1}^{N} \log p(x_n|\theta) \]
• Estimation of the parameters θ (Learning)
 - Maximize the likelihood (minimize the negative log-likelihood)
 - Take the derivative and set it to zero.
 \[\frac{\partial}{\partial \theta} E(\theta) = -\sum_{n=1}^{N} \frac{\partial \log p(x_n|\theta)}{\partial \theta} = 0 \]
Recap: Maximum Likelihood Approach

- For a 1D Gaussian, we thus obtain
 \[\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \quad \text{“sample mean”} \]

- In a similar fashion, we get
 \[\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \quad \text{“sample variance”} \]

- \(\hat{\theta} = (\hat{\mu}, \hat{\sigma}) \) is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.

- Note: the estimate of the sample variance is biased. Better use
 \[\hat{\sigma}_n^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \]

Online Adaptation (1D Case)

- Once estimated, adapt the Gaussians over time
 - We can compute a running estimate over a time window
 \[
 \begin{align*}
 \hat{\mu}^{(t+1)} &= \hat{\mu}^{(t)} + \frac{1}{N} x^{(t+1)} - \frac{1}{N} x^{(t)} \\
 (\hat{\sigma}_n^{(t+1)})^2 &= (\hat{\sigma}_n^{(t)})^2 + \frac{1}{N-1} ((x^{(t+1)} - \hat{\mu}^{(t+1)}))^2 \\
 &= \frac{1}{N-1} ((x^{(t+1)} - \hat{\mu}^{(t+1)}))^2
 \end{align*}
 \]

- However, distribution is non-stationary (and newer values are more important) \(\Rightarrow \) better use Exponential Moving Average filter
 \[
 \begin{align*}
 \hat{\mu}^{(t+1)} &= (1 - \alpha)\hat{\mu}^{(t)} + \alpha x^{(t+1)} \\
 (\hat{\sigma}_n^{(t+1)})^2 &= (1 - \alpha)(\hat{\sigma}_n^{(t)})^2 + \alpha((x^{(t+1)} - \hat{\mu}^{(t+1)}))^2 \\
 \end{align*}
 \]
 with a fixed learning rate \(\alpha \).

Problem: Complex Distributions

- Bi-modal distribution caused by specularities on the water surface

\(\Rightarrow \) A single Gaussian is clearly insufficient here...

MoG Background Model

- Improved statistical model
 - Large jumps between different pixel values because different objects are projected onto the same pixel at different times.
 - While the same object is projected onto the pixel, small local intensity variations due to Gaussian noise.

- Idea
 - Model the color distribution of each pixel by a mixture of \(K \) Gaussians
 \[p(x) = \sum_{k=1}^{K} \tau_k N(x_k \mid \mu_k, \Sigma_k) \]
 - Evaluate likelihoods of observed pixel values under this model.
 - Or let entire Gaussian components adapt to foreground objects and classify components as belonging to object or background.

Problem: Adaptation Speed, Sensitivity

- If the background model adapts too slowly...
 - Will construct a very wide and inaccurate model with low detection sensitivity

- If the model adapts too quickly...
 - Leads to inaccurate estimation of the model parameters
 - The model may adapt to the targets themselves (especially slow-moving ones)

- Design trade-off
 - Model should adapt quickly to changes in the background process and detect objects with high sensitivity.

 \(\Rightarrow \) How can we achieve that?

Recap: Mixture of Gaussians

- “Generative model”
 \[p(x) = \sum_{k=1}^{K} \tau_k N(x_k \mid \mu_k, \Sigma_k) \]
Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components
 \[\gamma_j(x_n) \leftarrow \frac{\pi_j N(x_n; \mu_j, \Sigma_j)}{\sum_{j=1}^{K} \pi_j N(x_n; \mu_j, \Sigma_j)} \quad \forall j = 1, \ldots, K; \quad n = 1, \ldots, N \]
 - M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments
 \[\hat{N}_j \leftarrow \frac{1}{N} \sum_{n=1}^{N} \gamma_j(x_n) = \text{soft number of samples labeled } j \]
 \[\hat{\mu}_j^{\text{new}} \leftarrow \frac{1}{N} \sum_{n=1}^{N} \gamma_j(x_n) x_n \]
 \[\hat{\Sigma}_j^{\text{new}} \leftarrow \frac{1}{N} \sum_{n=1}^{N} \gamma_j(x_n) (x_n - \hat{\mu}_j^{\text{new}}) (x_n - \hat{\mu}_j^{\text{new}})^T \]

Stauffer-Grimson Background Model

- Idea
 - Model the distribution of each pixel by a mixture of \(K \) Gaussians
 \[p(x) = \sum_{k=1}^{K} \pi_k N(x; \mu_k, \Sigma_k) \quad \text{where} \quad \Sigma_k = \sigma_k^2 \mathbf{I} \]
 - Check every new pixel value against the existing \(K \) components until a match is found (pixel value within the \(2.5 \sigma_k \) of \(\mu_k \)).
 - If a match is found, adapt the corresponding component.
 - Else, replace the least probable component by a distribution with the new value as its mean and an initially high variance and low prior weight.
 - Order the components by the value of \(w_k / \sigma_k \) and select the best \(B \) components as the background model, where
 \[B = \arg \min_b \left(\sum_{k=1}^{B} \frac{w_k}{\sigma_k} \right) \]

Discussion: Stauffer-Grimson Model

- Properties
 - Static foreground objects can be integrated into the mixture
 - Advantage: This doesn’t destroy the existing background model.
 - If an object is stationary for some time and then moves again, the distribution for the background still exists
 - Quick recovery from such situations.
 - Ordering of components by \(w_k / \sigma_k \)
 - Favors components that have more evidence (higher \(w_k \)) and a smaller variance (lower \(\sigma_k \)).
 - Those are typically the best candidates for background.
 - Model can adapt to the complexity of the observed distribution.
 - If the distribution is unimodal, only a single component will be selected for the background.
 - This can be used to save memory and computation.

Problem: Outdoor Scenes

- Dynamic areas
 - Waving trees, rippling water, ...
 - Fast variations
 - More flexible representation needed here.
Recap: Kernel Density Estimation

- Estimating the probability density from discrete samples
 - Approximation: \(p(x) \approx \frac{K}{NV} \)
 - Example: Determine the number \(K \) of data points inside a fixed hypercube…

Kernel Methods

- Example: Determine the number \(K \) of data points inside a fixed hypercube…

K-Nearest Neighbor

Kernel Methods

- \(p(x) = \frac{1}{N V} \sum_{n=1}^{N} k(\frac{x - x_n}{h}) \)

Recap: Parzen Window

- Interpretations
 1. We place a kernel window \(k \) at location \(x \) and count how many data points fall inside it.
 2. We place a kernel window \(k \) around each data point \(x_n \) and sum up their influences at location \(x \).
 - Direct visualization of the density.

- Still, we have artificial discontinuities at the cube boundaries...
 - We can obtain a smoother density model if we choose a smoother kernel function, e.g. a Gaussian

Kernel Background Modeling

- Nonparametric density estimation
 - Estimate a pixel’s background distribution using the kernel density estimator \(K(\cdot) \) as

 \[p(x^{(t)}) = \frac{1}{N} \sum_{n=1}^{N} k(x^{(t)} - x^{(n)}) \]

 - Choose \(K \) to be a Gaussian \(\mathcal{N}(0, \Sigma) \) with \(\Sigma = \text{diag}(\sigma_j) \). Then

 \[p(x^{(t)}) = \frac{1}{N} \sum_{n=1}^{N} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi\sigma_j^2}} e^{-\frac{(x^{(t)} - x^{(n)})^2}{2\sigma_j^2}} \]

 - A pixel is considered foreground if \(p(x^{(t)}) < \theta \) for a threshold \(\theta \).
 - This can be computed very fast using lookup tables for the kernel function values, since all inputs are discrete values.
 - Additional speedup: partial evaluation of the sum usually sufficient

Kernel Background Modeling

- Nonparametric model of background appearance
 - Very flexible approach, can deal with large amounts of background motion and scene clutter

Results Kernel Background Modeling

- Performance in heavy rain

Video source: Ahmed Elgammal
Results Kernel Background Modeling

• Results for color images

![Image](image-url)

• Practical issues with color images
 - Which color space to use?

Topics of This Lecture

• Motivation: Background Modeling
• Simple Background Models
 - Background Subtraction
 - Frame Differencing
• Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
• Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression
 - Applications

Practical Issues: Background Model Update

• Kernel background model
 - Sample N intensity values taken over a window of W frames.

• FIFO update mechanism
 - Discard oldest sample.
 - Choose new sample randomly from each interval of length W/N frames.

• When should we update the distribution?
 - Selective update: add new sample only if it is classified as a background sample
 - Blind update: always add the new sample to the model.

Updating Strategies

• Selective update
 - Add new sample only if it is classified as a background sample.
 - Enhances detection of new objects, since the background model remains uncontaminated.
 - But: Any incorrect detection decision will result in persistent incorrect detections later.
 ⇒ Deadlock situation.

• Blind update
 - Always add the new sample to the model.
 - Does not suffer from deadlock situations, since it does not involve any update decisions.
 - But: Allows intensity values that do not belong to the background to be added to the model.
 ⇒ Leads to bad detection of the targets (more false negatives).

Solution: Combining the Two Models

• Short-term model
 - Recent model, adapts to changes quickly to allow very sensitive detection
 - Consists of the most recent N background sample values.
 - Updated using a selective update mechanism based on the detection mask from the final combination result.

• Long-term model
 - Captures a more stable representation of the scene background and adapts to changes slowly.
 - Consists of N samples taken from a much larger time window.
 - Updated using a blind update mechanism.

• Combination
 - Intersection of the two model outputs.

Extension: False Detection Suppression

• Problem
 - Small camera motion (e.g., due to wind swaying) may still result in false detections.

• Workaround
 - Consider a small circular neighborhood (e.g., 5×5) $N_e(x)$ and evaluate the pixel under each neighbor’s background model B_{y}:
 $$ p_{N_e}(x^{(t)}) = \max_{y \in N_e(x)} p(x^{(t)}|B_{y}) $$
 - Threshold p_{N_e} to determine the foreground pixels.
 ⇒ Eliminates many false detections, but also some true ones.

 - To avoid losing true detections, add the constraint that an entire connected component must have moved from a nearby location, not only some of its pixels.
Effect of False Detection Suppression

- Effects of camera wind shaking are almost entirely suppressed

Original video Without false detection suppr. With false detection suppr.

- Results

Extension: Shadow Suppression

- Shadows are often detected together with the objects
 - Leads to poor localization, should be avoided.
 - Idea: Shadowed regions should have the same color as the neighboring background, only the intensity is lower.
 - Use chromaticity coordinates to remove shadows.

Color Normalization

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - This means colors can be normalized by the intensity.
 - Intensity is given by $I = R + G + B$
 - “Chromatic representation”
 $$
 r = \frac{R}{R + G + B},
 g = \frac{G}{R + G + B},
 b = \frac{B}{R + G + B}
 $$

Chromaticity Coordinates

- Observation:
 - Since $R + G + B = 1$, only 2 parameters are necessary
 - E.g., one can use r and g and obtains $B = 1 - R - G$

- b. Caveat: cannot distinguish between white and gray anymore!
 - Use the normalized (r, g) coordinates, but keep the lightness
 $s = R + B + G$ as third coordinate ⇒ (r, g, s)

Shadow Removal Procedure

- Idea
 - Let (r, g, s) be the expected background pixel color and (r_o, g_o, s_o) the observed one.
 - Shadows or highlights affect the expected pixel lightness within certain bounds $\alpha \leq s_o / s \leq \beta$.

- Procedure
 - Select the subset B of relevant sample points for each pixel from the stored set A, i.e., those samples that could produce the observed lightness if affected by shadows:
 $$B = \{ x_i | x_i \in A \land \alpha \leq \frac{s_i}{s} \leq \beta \}$$
 - Apply the regular kernel background model based on this subset B using only the (r, g) color components.

Effect of Shadow Suppression
Topics of This Lecture

- Motivation: Background Modeling
- Simple Background Models
 - Background Subtraction
 - Frame Differencing
- Statistical Background Models
 - Single Gaussian
 - Mixture of Gaussians
 - Kernel Density Estimation
- Practical Issues and Extensions
 - Background model update
 - False detection suppression
 - Shadow suppression
 - Applications

Applications: Visual Surveillance

- Background modeling to detect objects for tracking
 - Extension: Learning a foreground model for each object.

Applications: Articulated Tracking

- Background modeling as preprocessing step
 - Track a person’s location through the scene
 - Extract silhouette information from the foreground mask.
 - Perform body pose estimation based on this mask.

Summary

- Background Modeling
 - Fast and simple procedure to detect moving object in static camera footage.
 - Makes subsequent tracking much easier!
 - If applicable, always make use of this information source!
- We’ve looked at two models in detail
 - Adaptive MoG model (Stauffer-Grimson model)
 - Kernel background model (Elgammal et al.)
 - Both perform well in practice, have been used extensively.
- Many extensions available
 - Learning object-specific foreground color models
 - Background modeling for moving cameras
 - ...

References and Further Reading

- More information on density estimation in Bishop’s book
 - Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
 - Mixture of Gaussians: Ch. 2.3.9 and 9
 - Nonparametric methods: Ch. 2.5.
- More information on background modeling:
 - Visual Analysis of Humans: Ch. 3
 - A. Elgammal et al., *Non-parametric Model for Background Subtraction*, ECCV’00